精英家教网 > 高中数学 > 题目详情
18.双曲线x2-$\frac{{y}^{2}}{9}$=1的渐近线与抛物线y2=2px(p>0)的准线相交于A,B两点,若△ABO的面积为6(O为坐标原点),则p的值是2$\sqrt{2}$.

分析 根据双曲线和抛物线的简单性质,结合△ABO的面积为6,构造关于p的方程,解得p值.

解答 解:双曲线x2-$\frac{{y}^{2}}{9}$=1的渐近线为直线y=±3x,
抛物线y2=2px(p>0)的准线为x=-$\frac{p}{2}$,
故A,B两点的坐标为(-$\frac{p}{2}$,±$\frac{3}{2}$p),
故线段AB的长为:3p,O到AB的距离d=$\frac{p}{2}$,
△ABO的面积S=$\frac{1}{2}$×3p×$\frac{p}{2}$=6,
解得:p=2$\sqrt{2}$,
故答案为:2$\sqrt{2}$

点评 本题考查的知识点是抛物线的简单性质,双曲线的简单性,三角形面积公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.y=log${\;}_{\frac{1}{3}}$(x2-5x+4)的单调递增区间是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a,b为实常数).
(1)当a=b=1时,证明:函数f(x)不是奇函数;
(2)设函数f(x)是实数集R上的奇函数,求a与b的值;
(3)当f(x)为奇函数时,设其定义域为A,是否存在同时满足下列两个条件的区间D:(1)D⊆A,(2)对任何x∈D,c∈D,都有f(x)<c2-3c+3成立?若存在,求出这样的区间D;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设命题p:方程$\frac{{x}^{2}}{1-2m}$+$\frac{{y}^{2}}{m+4}$=1表示的图象是双曲线;命题q:?x∈R,3x2+2mx+(m+6)<0,p∨q为真,¬p为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.an+1=$\frac{n}{n+1}$an+1,且a1=1,则an=$\frac{n+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.确定函数y=-3x2+12x-3的开口方向,对称轴、顶点坐标、单调区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用区间表示|x|<5的解集是(  )
A.(-∞,5)B.(5,+∞)C.(0,5)D.(-5,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若|x-2|+y2=0,则xy=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{m}-\frac{1}{x-1}$
(1)求证函数f(x)是(1,+∞)增函数;
(2)若函数f(x)在[a,b]上的值域是[2a,2b](1<a<b),求实数m的取值范围;
(3)若任意x∈[$\frac{3}{2}$,4],不等式f(x)>x恒成立,求实数m的取值范围.
(4)若存在x∈[$\frac{3}{2}$,4],使不等式f(x)>x成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案