精英家教网 > 高中数学 > 题目详情
(2012•黄州区模拟)已知双曲线的顶点与焦点分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点与顶点,若双曲线的离心率为2,则椭圆离心率为(  )
分析:先根据双曲线的顶点与焦点分别是椭圆的焦点与顶点,确定双曲线的顶点与焦点,由双曲线的离心率求出椭圆的离心率.
解答:解:由题意可设双曲线的方程为:
x2
m2
-
y2
n2
=1,(m>0,n>0)

∵椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点(±c,0),顶点(±a,0),c2=a2-b2
由题意可得,双曲线的顶点为(±c,0),焦点为(±a,0)
∴m=c,n2+m2=a2
∵双曲线的离心率e=
m2+n2
m
=2
∴n=
3
m

∴b=n=
3
m
,c=m,a=2m
椭圆的离心率e=
1
2

故选B
点评:本题以椭圆方程为载体,考查双曲线的几何性质,考查椭圆的离心率,正确运用几何量的关系是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+1.
(1)若x∈[0,
π
2
],f(x)=
11
10
,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c-
3
a,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知某几何体的三视图如图,则该几何体的表面积为
3+
2
+
3
3+
2
+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知函数f(x)=
|log
x
4
-1|-2,|x|≤1
1
1+x
1
3
,|x|>1
,则f(f(27))=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)如图是二次函数f(x)=x2-bx+a的部分图象,则函数g(x)=2lnx+f(x)在点(b,g(b))处切线的斜率的最小值是(  )

查看答案和解析>>

同步练习册答案