精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )的上顶点到右顶点的距离为,左焦点为,过点且斜率为的直线交椭圆于 两点.

(Ⅰ)求椭圆的标准方程及的取值范围;

(Ⅱ)在轴上是否存在定点,使恒为定值?若存在,求出点的坐标;若不存在,请说明理由.

【答案】(Ⅰ)(Ⅱ)存在定点

【解析】试题分析:(1)运用离心率公式和焦点坐标,直接求出a,b;

(2)利用设而不求的方法,表示出设出要求的定值,利用对应项系数成比例明确出点的坐标

试题解析:

(Ⅰ)由已知可得,得

过点且斜率为的直线

,消去

所以的取值范围是

(Ⅱ)设

则由(Ⅰ)知,

假设存在点,则

所以

要使得为常数),只要

从而

整理得,解得,从而

故存在定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二阶矩阵M有特征值λ=8及对应的一个特征向量 =[ ],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的直线与圆相切,且与直线垂直,则( )

A. 2 B. 1 C. D.

【答案】A

【解析】因为点P(2,2)满足圆的方程,所以P在圆上,

又过点P(2,2)的直线与圆相切,且与直线axy+1=0垂直,

所以切点与圆心连线与直线axy+1=0平行,

所以直线axy+1=0的斜率为: .

故选A.

点睛:对于直线和圆的位置关系的问题,可用“代数法”或“几何法”求解,直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,解题时不要单纯依靠代数计算,若选用几何法可使得解题过程既简单又不容易出错.

型】单选题
束】
23

【题目】分别是双曲线的左、右焦点.若点在双曲线上,且,则 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校射击队的某一选手射击一次,其命中环数的概率如表:

命中环数

10环

9环

8环

7环

概率

0.32

0.28

0.18

0.12

求该选手射击一次,

(1)命中9环或10环的概率.

(2)至少命中8环的概率.

(3)命中不足8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 平面 ,且 的中点.

Ⅰ)求证:

Ⅱ)求平面与平面所成的锐二面角的余弦值.

Ⅲ)在棱上是否存在一点,使得直线与平面所成的角是.若存在,指出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点上的点,满足

(1)当在圆上运动时,求点的轨迹方程;

(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过两点 且圆心在直线

(Ⅰ)求圆的标准方程;

(Ⅱ)直线过点且与圆有两个不同的交点 ,若直线的斜率大于0,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线在第一象限内的点到焦点的距离为

(1)若,过点, 的直线与抛物线相交于另一点,求的值;

(2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李,小王设计的底座形状分别为 ,经测量米, 米, 米,

(I)求的长度;

(Ⅱ)若环境标志的底座每平方米造价为元,不考虑其他因素,小李,小王谁的设计建造费用最低(请说明理由),最低造价为多少?(

查看答案和解析>>

同步练习册答案