精英家教网 > 高中数学 > 题目详情
11.函数f(x)=|tanx|的周期为(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

分析 利用周期的定义可判断其周期.

解答 解:f(x+π)=|tan(x+π)|=|tanx|=f(x),
所以,f(x)=|tanx|的最小正周期为π.
故选:B.

点评 本题考查正切函数的周期性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率是$\frac{{\sqrt{3}}}{2}$,且过点$P(\sqrt{3},\frac{1}{2})$.
(1)求椭圆C的标准方程;
(2)直线l过点E(-1,0)且与椭圆C交于A,B两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知(x2+1)(2x+1)9=a0+a1(x+1)+a2(x+1)2+…+a11(x+1)11,则a1+a2+a11=781.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\vec a$=(3,1),$\vec b$=(sinα,cosα),且$\vec a$∥$\vec b$,则tanα=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(x,y)满足条件:$\left\{\begin{array}{l}x≥0\\ x-y≥0\\ 2x+y-k≤0\end{array}\right.$,若z=x+3y的最大值为8,则k的值为(  )
A.-6B.6C.8D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设有如下两个命题:
①:关于x的不等式x2+(a-1)x+a2>0的解集是R;
②:函数f(x)=x3+4ax-2在(1,+∞)上是增函数.
已知“命题①或命题②”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{lo{g}_{2}x+1,1<x≤2}\end{array}\right.$,则f(2014)+f(2015)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=2.50.8,b=log2.50.8,c=sin2.5,则(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,A=60°,B=45°,a=1,则最短边的边长等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案