精英家教网 > 高中数学 > 题目详情
设M是△ABC内一点,
AB
AC
=2
3
,∠BAC=30°
,定义f(x)=(m,n,p),其中m,n,p分别是△MBC,△MAC,△MAB的面积,若f(Q)=(
1
2
,x,y)
1
x
+
4
y
=a , 则
a2+2
a
的取值范围是
[
163
9
,+∞
[
163
9
,+∞
分析:先确定x+y=1-
1
2
=
1
2
,再利用基本不等式,确定a≥18,进而利用函数的单调性,即可得出结论.
解答:解:∵
AB
AC
=2
3
,∠BAC=30°

∴由向量的数量积公式得|
AB
||
AC
|cos∠BAC=2
3

|
AB
||
AC
|=4

S△ABC=
1
2
|
AB
||
AC
|sin30°=1

∴x+y=1-
1
2
=
1
2

a=
1
x
+
4
y
=2(
1
x
+
4
y
)(x+y)=2(
y
x
+
4x
y
+5)≥2(2
y
x
4x
y
+5)
=18
当且仅当
y
x
=
4x
y
时.取等号,∴a≥18
a2+2
a
=a+
2
a
在(0,
2
)上单调递减,在(
2
,+∞)上单调递增
a2+2
a
=a+
2
a
在[18,+∞)上单调递增,
a2+2
a
=a+
2
a
163
9

a2+2
a
的取值范围是[
163
9
,+∞

故答案为:[
163
9
,+∞
).
点评:本题考查基本不等式的应用和向量的数量积,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M是△ABC内一点,且△ABC的面积为1,定义f(M)=(m,n,p),其中m、n、p分别是△MBC,△MCA,△MAB的面积,若f(M)=(
1
2
,x,y),则
1
x
+
4
y
的最小值是(  )
A、8B、9C、16D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是△ABC内一点,且
AB
AC
=2
3
,∠BAC=30°,定义f(M)=(m,n,p),其中m、n、p分别是△MBC,△MCA,△MAB的面积,若f(P)=(
1
2
,x,y)则
1
x
+
4
y
的最小值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海模拟)设M是△ABC内一点,且
AB
AC
=2
3
,∠BAC=30°
,定义f(M)=(m,n,p),其中m、n、p分别是△MBC,△MCA,△MAB的面积,若f(M)=(
1
2
,x,y),则
1
x
+
4
y
的最小值是
18
18

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是△ABC内一点,且
AB
AC
=4
3
,∠BAC=30°
,定义f(M)=(m,n,p),其中m,n,p分别是△MBC,△MCA,△MAB的面积,若f(M)=(1,x,y),则
1
x
+
4
y
的最小值
(  )

查看答案和解析>>

同步练习册答案