精英家教网 > 高中数学 > 题目详情
下面命题正确的是   
①存在实数α,使sinαcosα=1;
②若α,β是第一象限角,且α>β,则tanα>tanβ;
③在△ABC中,若sinAsinB>cosAcosB,则这个三角形是锐角三角形;
④函数y=cos2x+sinx的最小值是-1;
⑤若cosθ<0且sinθ>0,则是第一象限角.
【答案】分析:①sinαcosα利用二倍角的正弦函数公式化简,根据正弦函数的值域得到sinαcosα的范围,根据范围得到其值不能等于1,本选项错误;
②由α,β是第一象限角,可找两个角且α>β,但是tanα<tanβ,利用反例可说明本选项错误;
③把已知的不等式移项后,利用两角和与差的余弦函数公式化简,根据A和B为三角形的内角,可得出A+B为钝角,从而得到C为锐角,但是A和B不一定为锐角,故此三角形不一定为锐角三角形,本选项错误;
④把函数利用同角三角函数间的基本关系化为关于sinx的二次函数,根据sinx的值域,利用二次函数的性质可求出函数的最小值,即可作出判断;
⑤根据题意得出sinθ与cosθ异号,得出θ为第二或第四象限角,进而得到是第一或第四象限角,本选项错误.
解答:解:①∵sinαcosα=sin2α,且sin2α∈[-1,1],
∴sinαcosα∈[-],
则不存在实数α,使sinαcosα=1,本选项错误;
②若α,β是第一象限角,令α=,β=
满足α>β,但是tanα=tan(2π+)=tan=,tanβ=
即tanα<tanβ,本选项错误;
③sinAsinB>cosAcosB,变形得:cosAcosB-sinAsinB<0,
即cos(A+B)<0,又A和B都为三角形的内角,
∴A+B∈(,π),即C为锐角,
但三角形不一定为锐角三角形,本选项错误;
④函数y=cos2x+sinx=1-sin2x+sinx=-(sinx-2+
又-1≤sinx≤1,
则当sinx=-1时,函数有最小值,最小值为-1,本选项正确;
⑤由cosθ<0且sinθ>0,得到θ为第二或四象限,
为第一象限或第四象限,本选项错误,
则正确的选项为④.
故答案为:④
点评:此题考查了二倍角的正弦函数公式,两角和与差的余弦函数公式,正弦函数的值域,二次函数的性质,三角函数在各象限的符号,以及同角三角函数间的基本关系,综合性比较强,要求学生掌握知识要全面.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、若函数f(x,y,z)满足f(a,b,c)=f(b,c,a)=f(c,a,b),则称函数f(x,y,z)为轮换对称函数,如f(a,b,c)=abc是轮换对称函数,下面命题正确的是
①②③④

①函数f(x,y,z)=x2-y2+z不是轮换对称函数.
②函数f(x,y,z)=x2(y-z)+y2(z-x)+z2(x-y)是轮换对称函数.
③若函数f(x,y,z)和函数g(x,y,z)都是轮换对称函数,则函数f(x,y,z)-g(x,y,z)也是轮换对称函数.
④若A、B、C是△ABC的三个内角,则f(A,B,C)=2+cosC•cos(A-B)-cos2C为轮换对称函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面命题正确的是

①存在实数α,使sinαcosα=1;
②若α,β是第一象限角,且α>β,则tanα>tanβ;
③在△ABC中,若sinAsinB>cosAcosB,则这个三角形是锐角三角形;
④函数y=cos2x+sinx的最小值是-1;
⑤若cosθ<0且sinθ>0,则
θ2
是第一象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)若对于定义在R上的函数f(x),存在常数t(t∈R),使得f(x+t)+tf(x)=0对任意实数x均成立,则称f(x)是阶回旋函数,则下面命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)若对于定义在R上的函数f(x),存在常数t(t∈R),使得f(x+t)+tf(x)=0对任意实数x均成立,则称f(x)是t阶回旋函数,则下面命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有人从“若a<b,则2a<
b2-a2
b-a
<2b”中找到灵感引入一个新概念,设F(x)=x2,f(x)=2x,于是有f(a)<
F(b)-F(a)
b-a
<f(b),此时称F(x)为甲函数,f(x)为乙函数,下面命题正确的是(  )

查看答案和解析>>

同步练习册答案