精英家教网 > 高中数学 > 题目详情
已知ABCD-A1B1C1D1为单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”,白蚂蚁爬行的路线是AA1→A1D1→…,黑蚂蚁爬行的路线是AB→BB1→…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是自然数),设黑、白蚂蚁都走完2012段后各停止在正方体的某个顶点处,这时黑、白两只蚂蚁的距离是   
【答案】分析:先根据题意,先通过前几步爬行,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬6步回到起点,周期为6.再计算黑蚂蚁爬完2012段后实质是到达哪个点以及计算白蚂蚁爬完2012段后实质是到达哪个点,最后计算出它们的距离即可.
解答:解:由题意,白蚂蚁爬行路线为AA1→A1D1→D1C1→C1C→CB→BA,
即过6段后又回到起点,可以看作以6为周期,
同理,黑蚂蚁也是过6段后又回到起点.
而2012除以6等于335余2
所以黑蚂蚁爬完2012段后回到B1点,
同理,白蚂蚁爬完2012段后到回到D1点;
所以它们此时的距离为:B1D1=
故答案为; 
点评:本题以一个创新例子为载体,考查归纳推理的能力、空间想象能力、异面直线的定义等相关知识,属于中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1的棱长为a,
(1)用平面A1BC1截去一角后,求剩余部分的体积;
(2)求A1B和B1C所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知在正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,E为C1C上的点,且CE=1,
(1)求证:A1C⊥平面BDE;
(2)求A1B与平面BDE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知正方体ABCD-A1B1C1D1中,点F为A1D的中点.
(1)求证:A1B⊥平面AB1D;
(2)求证:平面A1B1CD⊥平面AFC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABCD-A1B1C1D1为正方体,①(
A1A
+
A1D1
+
A1B1
)2=3(
A1B1
)2
;②
A1C
•(
A1B1
-
A1A
)=0
;③向量
AD1
与向量
A1B
的夹角是60°;④正方体ABCD-A1B1C1D1的体积为|
AB
AA1
AD
|
.其中正确的命题是
①②
①②
(写出所有正确命题编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F.
(Ⅰ)求证:A1C⊥平面BED;
(Ⅱ)求A1B与平面BDE所成的角的正弦值.

查看答案和解析>>

同步练习册答案