精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于点(1,0)对称,若对任意的x,y∈R,等式f(y﹣3)+f( )=0恒成立,则 的取值范围是(
A.[2﹣ ,2+ ]
B.[1,2+ ]
C.[2﹣ ,3]
D.[1,3]

【答案】C
【解析】解:函数y=f(x)的图象可由y=f(x﹣1)的图象向左平移1个单位得到,
由于y=f(x﹣1)的图象关于点(1,0)对称,
则y=f(x)的图象关于原点对称,
则f(x)为奇函数,即有f(﹣x)=﹣f(x),
则等式f(y﹣3)+f( )=0恒成立即为
f(y﹣3)=﹣f( )=f(﹣ ),
又f(x)是定义在R上的增函数,则有y﹣3=﹣
两边平方可得,(x﹣2)2+(y﹣3)2=1,
即有y=3﹣ 为以(2,3)为圆心,1为半径的下半圆,
= 可看作是半圆上的点与原点的连线的斜率,
如图,kOA= =3,取得最大,过O作切线OB,设OB:y=kx,
则由d=r得, =1,解得,k=2
由于切点在下半圆,则取k=2﹣ ,即为最小值.
的取值范围是[2﹣ ,3].
故选C.

【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2 sinθ.
(1)求圆C的直角做标方程;
(2)圆C的圆心为C,点P为直线l上的动点,求|PC|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD= DB,点C为圆O上一点,且BC= AC.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:PA⊥CD;
(2)求二面角C﹣PB﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有(  )

①函数y的定义域为{x|x1};

②函数yx2x+1(0,+)上是增函数;

③函数f(x)=x3+1(xR),若f(a)=2,则f(-a)=-2;

④已知f(x)R上的增函数,若ab>0,则有f(a)+f(b)>f(-a)+f(-b).

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.

(1)求A∩(UB);

(2)若A∪C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程有5个不同的实数解,则实数的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户

求抽取的6名用户中男女用户各多少人;

从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率.

(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

.635

非移动支付活跃用户

移动支付活跃用户

合计

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xetx﹣ex+1,其中t∈R,e是自然对数的底数.
(1)若方程f(x)=1无实数根,求实数t的取值范围;
(2)若函数f(x)在(0,+∞)内为减函数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的2×2列联表:

喜爱打篮球

不喜爱打篮球

合计

男生

6

女生

10

合计

48

已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为.

(1)请将上面的2×2列联表补充完整;(不用写计算过程)

(2)能否在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关?说明你的理由.

P(K2≥k0)

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

同步练习册答案