精英家教网 > 高中数学 > 题目详情
20.若a,b,c∈R,且a>b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.(a-b)c2≥0C.a2>b2D.ac>bc

分析 对于A,C,D举反例即可判断,对于B,根据不等式的性质即可判断

解答 解:对于A,若a=1,b=-1,则$\frac{1}{a}$>$\frac{1}{b}$,故A不成立,
对于B,a>b,则a-b>0,故(a-b)c2≥0,故B成立,
对于C,若a=1,b=-1,则a2=b2,故C不成立,
对于D,若c=0,则ac=bc,故D不成立,
故选:B.

点评 本题主要考查不等式与不等关系,不等式的基本性质的应用,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在正方体ABCD-A1B1C1D1中,E,F分别是线段C1D1,A1B1上的点且C1E=A1F=$\frac{1}{3}$A1B1,则直线BE与DF所成角的余弦值是$\frac{1}{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知曲线${C_1}:\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.$(θ为参数)与曲线${C_2}:\left\{\begin{array}{l}x=t\\ y=kt-2\end{array}\right.$(t为参数)有一个公共点,则实数k的值为$±\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{{cos{{10}°}+\sqrt{3}sin{{10}°}}}{{\sqrt{1-cos{{80}°}}}}$的值为(  )
A.-2B.2C.$-\sqrt{2}$D..$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若tanα=3,则$\frac{2sinαcosα}{si{n}^{2}α+2co{s}^{2}α}$的值为(  )
A.$\frac{6}{11}$B.$\frac{3}{11}$C.$\frac{11}{3}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列有关命题的说法正确的是(  )
A.命题“?x∈R,均有x2-x+1>0的否定是:“?x∈R,均有x2-x+1<0”.
B.命题“若x=y,则sinx=siny”的逆否命题为真命题.
C.线性回归方$\widehat{y}=b\widehat{x}+a$对应的直线一定经过其样本数据点(x1,y1),(x2,y2),…(xn,yn)中的一个点.
D.“直线与双曲线有唯一的公共点”是“直线与双曲线相切”充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知0<x<2,0<y<2,则$\sqrt{{x^2}+{y^2}}+\sqrt{{x^2}+{{(2-y)}^2}}+\sqrt{{{(2-x)}^2}+{y^2}}+\sqrt{{{(2-x)}^2}+{{(2-y)}^2}}$最小值为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数ai,bi∈R,(i=1,2,…n),且满足a12+a22+…an2=1,b12+b22+…bn2=1,则a1b1+a2b2+…+anbn的最大值为(  )
A.1B.2C.n$\sqrt{2}$D.2$\sqrt{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设S=cos$\frac{3π}{5}$sin$\frac{6π}{5}$,T=tan$\frac{8π}{5}$,则(  )
A.S<TB.S>TC.S=TD.S=2T

查看答案和解析>>

同步练习册答案