A. | $\frac{{x}^{2}}{4}$-y2=1 | B. | $\frac{{x}^{2}}{3}$-y2=1 | C. | $\frac{{x}^{2}}{2}$-y2=1 | D. | x2-$\frac{{y}^{2}}{2}$=1 |
分析 先根据椭圆的标准方程,求得焦点坐标,进而求得双曲线离心率,根据点P在双曲线上,根据定义求出a,从而求出b,则双曲线方程可得.
解答 解:由题设知:焦点为($±\sqrt{3}$,0),2a=$\sqrt{(2+\sqrt{3})^{2}+1}$-$\sqrt{(2-\sqrt{3})^{2}+1}$=2$\sqrt{2}$,
∴a=$\sqrt{2}$,c=$\sqrt{3}$,b=1
∴与椭圆$\frac{{x}^{2}}{4}$+y2=1共焦点且过点P(2,1)的双曲线方程是$\frac{{x}^{2}}{2}$-y2=1.
故选C.
点评 本题主要考查了双曲线的标准方程.考查了学生对双曲线和椭圆基本知识的掌握.
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | b<a<c | C. | b<c<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2},\frac{1}{3}$ | B. | $\frac{1}{3},\frac{2}{3}$ | C. | $\frac{1}{5},\frac{2}{5}$ | D. | $\frac{1}{3},\frac{1}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com