精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)求函数的极值;
(Ⅲ)对恒成立,求实数的取值范围.

(Ⅰ);(Ⅱ);(Ⅲ).

解析试题分析:(Ⅰ)本小题首先利用导数的公式和法则求得原函数的导函数,根据导数的几何意义可求得函数的切线方程为,化简可得
(Ⅱ)本小题首先求得函数的定义域,然后根据(Ⅰ)中求得的导函数去求导数的零点,通过列表分析其单调性,进而寻找极值点;
(Ⅲ)本小题针对恒成立问题,首先考虑对不等式分离参数,然后转化为求函数上的最小值的问题,通过求导、分析单调性,然后得出函数的最小值为,于是.
试题解析:(Ⅰ)函数的定义域为,                              1分
,                                           2分
,                               3分
曲线在点处的切线方程为
,                                   4分
(Ⅱ)令,得,                                  5分
列表:






-
0
+




                                                                 7分
函数<

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,恒成立,求实数的取值范围;
(Ⅱ)若对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是大于零的常数.
(Ⅰ)当时,求的极值;
(Ⅱ)若函数在区间上为单调递增,求实数的取值范围;
(Ⅲ)证明:曲线上存在一点,使得曲线上总有两点,且成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间及最大值;
(2)恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=+3-ax.
(1)若f(x)在x=0处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≥+ax+1在x≥时恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间内的最小值为,求的值.(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)当时,求曲线在点处的切线方程;
(II)在区间内至少存在一个实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若处取得极大值,求实数的值;
(2)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数,
(1)求实数的取值集合
(2)当取值集合中的最小值时,定义数列;满足,求数列的通项公式;
(3)若,数列的前项和为,求证:.

查看答案和解析>>

同步练习册答案