精英家教网 > 高中数学 > 题目详情
15.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F,则$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{BD}$B.$\frac{1}{2}\overrightarrow{AC}+\frac{1}{4}\overrightarrow{BD}$C.$\frac{1}{2}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{BD}$D.$\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BD}$

分析 根据两个三角形相似对应边成比例,得到DF与FC之比,做FG平行BD交AC于点G,使用已知向量表示出要求的向量,得到结果.

解答 解:∵△DEF∽△BEA
DF:BA═DE:BE=1:3;
作FG平行BD交AC于点G,
∴FG:DO=2:3,CG:CO=2:3,
∴$\overrightarrow{GF}$=$\frac{1}{3}$$\overrightarrow{BD}$,
∵$\overrightarrow{AG}$=$\overrightarrow{AO}$+$\overrightarrow{OG}$=$\frac{2}{3}$$\overrightarrow{AC}$,
∴$\overrightarrow{AF}$=$\overrightarrow{AG}$+$\overrightarrow{GF}$=$\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BD}$,
故选:D

点评 向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知f(x)=ax2-x-c,若不等式f(x)>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\left\{\begin{array}{l}|{lo{g}_{5}(1-x)|,(x<1)}\\{-(x-2)^{2}+2,(x>1,x≠2)}\end{array}\right.$ 且对于方程f(x)2-af(x)+a2-3=0有7个实数根,则实数a的取值范围是$\sqrt{3}<a<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(4,-2).
(Ⅰ)当$\overrightarrow{a}$∥$\overrightarrow{b}$时,求|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(Ⅱ)若$\overrightarrow{a}$与$\overrightarrow{b}$所成角为钝角,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x∈N|x≤1},B={x|-1≤x≤2},则A∩B=(  )
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}是首项为1的单调递增的等比数列,且满足a3,$\frac{5}{3}{a_4},{a_5}$成等差数列.
(1)求{an}的通项公式;
(2)若bn=log3(an•an+1)(n∈N*),求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知空间向量$\overrightarrow a$=(0,1,1),$\overrightarrow b$=(-1,0,1),则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={0,1},B={x|-1≤x≤2},则A∩B=(  )
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x≤0}\\{f(x-2)+\frac{3}{2},x>0}\end{array}\right.$,则f($\frac{5}{3}$)的值为1.

查看答案和解析>>

同步练习册答案