精英家教网 > 高中数学 > 题目详情

【题目】如图,定义在[-1,+∞)上的函数的图象由一条线段及抛物线的一部分组成.

(1)的值及的解析式;

(2)f(x)=,求实数x的值.

【答案】(1) f(f(4))=1, (2)

【解析】

(1)运用待定系数法设出解析式,再把已知点代入求解即可;

(2)分段求解,符合题意的保留,不符合题意的舍去.

(1)根据图象可知f(4)=0,f(f(4))=f(0)=1,

y=kx+b

因为过点(0,1)和点(﹣1,0)代入可得:b=1,k=1

y=x+1

x0时,y=ax2+bx+c,

因为过点(0,0)(4,0)(2,﹣1)代入可得:

y=x2﹣x

所以;y=

(2)f(x)=

x+1=时,x=﹣,符合题意;

﹣x=时,即x=2,x=2(舍去)

x=﹣,x=2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x.

(Ⅰ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值g(a);

(Ⅱ)在(Ⅰ)的条件下,是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在实数 ,使 成立,则称的不动点.

(1)当时,求的不动点;

(2)若对于任意的实数 函数 恒有两个相异的不动点,求实数的取值范围;

(3)在(2)的条件下,若的图象上 两点的横坐标是函数 的不动点,且直线 是线段的垂直平分线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域为的函数同时满足以下三条:

(ⅰ)对任意的总有(ⅱ)

(ⅲ)若则有就称为“A函数”,下列定义在的函数中为“A函数”的有_______________

;②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面为等腰梯形且底面与侧面垂直 分别为线段的中点 .

1证明: 平面

2与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣(aR)

(1)如果函数f(x)为奇函数,求实数a的值;

(2)证明:对任意的实数a,函数f(x)在(﹣∞+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人租用一块土地种植一种瓜类作物,租期5年,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455kg.当年产量低于450kg时,单位售价为12元/kg,当年产量不低于450kg时,单位售价为10元/kg.

(1)求图中a的值;
(2)以各区间中点值作为该区间的年产量,并以年产量落入该区间的频率作为年产量取该区间中点值的概率,求年销售额X(单位:元)的分布列;
(3)求在租期5年中,至少有2年的年销售额不低于5000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且点(4,2)在函数f(x)的图象上.

(1)求函数f(x)的解析式,并在图中的直角坐标系中画出函数f(x)的图象;

(2)求不等式f(x)<1的解集;

(3)若方程f(x)-2m=0有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求的值.

)求函数的最小正周期和单调递增区间.

查看答案和解析>>

同步练习册答案