精英家教网 > 高中数学 > 题目详情

已知F是抛物线y2=4x的焦点,过点F1的直线与抛物线交于A,B两点,且|AF|=3|BF|,则线段AB的中点到该抛物线准线的距离为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    10
B
分析:根据抛物线的方程求出准线方程,利用抛物线的定义即条件,求出A,B的中点横坐标,即可求出线段AB的中点到抛物线准线的距离.
解答:抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1
设A(x1,y1),B(x2,y2),则
∵|AF|=3|BF|,∴x1+1=3(x2+1),∴x1=3x2+2
∵|y1|=3|y2|,∴x1=9x2,∴x1=3,x2=
∴线段AB的中点到该抛物线准线的距离为[(x1+1)+(x2+1)]=
故选B.
点评:本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为(  )
A、
3
4
B、1
C、
5
4
D、
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=4x的焦点,A,B是抛物线上两点,△AFB是正三角形,则该正三角形的边长为
8±4
3
8±4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)已知F是抛物线y2=4x的焦点,Q是抛物线的准线与x轴的交点,直线l经过点Q.
(Ⅰ)若直线l与抛物线恰有一个交点,求l的方程;
(Ⅱ)如题20图,直线l与抛物线交于A、B两点,
(ⅰ)记直线FA、FB的斜率分别为k1、k2,求k1+k2的值;
(ⅱ)若线段AB上一点R满足
|AR|
|RB|
=
|AQ|
|QB|
,求点R的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点.若线段AB的中点到y轴的距离为
5
4
,则|AF|+|BF|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=4x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=5,则线段AB的中点到该抛物线准线的距离为(  )

查看答案和解析>>

同步练习册答案