精英家教网 > 高中数学 > 题目详情
20.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)判断平面BEG与平面ACH的位置关系.并证明你的结论;
(2)若正方体棱长为1,求三棱锥F-BEG的体积.

分析 (1)说明EG∥AC且AH∥BG,利用平面与平面平行的判定定理证明平面ACH∥平面BEG.
(2)通过VF-BEG=VE-FBG,直接求解几何体的体积即可.

解答 证:(1)由题F、G、H位置如图,正方体中,EG∥AC且AH∥BG
又AH∩AC=A,EG∩BG=G且
AH、AC∈平面ACH,EG、BG?平面BEG
∴平面ACH∥平面BEG
(2)∵正方体中,EF⊥FG⊥FB
∴VF-BEG=VE-FBG=$\frac{1}{3}$×S△BGF×EF=$\frac{1}{3}$×$\frac{1}{2}$×1×1×1=$\frac{1}{6}$.

点评 本题考查平面与平面平行的判定定理的应用,几何体的体积的求法,考查计算能力以及空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,BD:DC=2:1,AE:EC=1:3,求OB:OE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}=(6,x)$,$\overrightarrow{b}$=(2,-2),且($\overrightarrow{a}-\overrightarrow{b}$)$⊥\overrightarrow{b}$,则x的值是(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.点A∈α,B∉α,C∉α,则平面ABC与平面α的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,若AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{\sqrt{3}}{4}$,则A到平面PBC的距离是$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a、b、c,tanC=$\frac{sinA+sinB}{cosA+cosB}$.
(1)求角C的大小;
(2)若△ABC的外接圆直径为1,求△ABC面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m•2t+2•$\frac{1}{{2}^{t}}$ (t≥0,并且m>0).
(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;
(2)若物体的温度总不低于2摄氏度,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E.
(1)求证:$\frac{AP}{PC}$=$\frac{FA}{AB}$;
(2)若⊙O的直径AB=1,求tan∠CPE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设椭圆C的两个焦点分别为F1、F2,若C上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则C的离心率等于(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案