精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xoy中,抛物线y2=4x的焦点为F,准线为l,A,B是该抛物线上两动点,∠AFB=120°,M是AB中点,点M是点M在l上的射影.则
MM/
AB
的最大值为______.
设AF=a,BF=b,由抛物线定义,2MM'=a+b.
而余弦定理,|AB|2=a2+b2-2abcos120°=(a+b)2-ab,
再由a+b≥2
ab
,得到|AB|≥
3
2
(a+b).
所以
MM/
AB
的最大值为
3
3

故答案为:
3
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线,在此抛物线上一点到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线x=
1
8
y2
的准线方程是(  )
A.x=-4B.x=-2C.y=-4D.y=-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知动点A、B分别在图中抛物线y2=4x及椭圆
x2
4
+
y2
3
=1
的实线上运动,若ABx,点N的坐标为(1,0),则三角形ABN的周长l的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线y2=2px(p>0)的焦点与椭圆
x2
6
+
y2
2
=1
的右焦点重合,则p=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线有光学性质:由其焦点射出的光线经抛物线反象后,沿平行于抛物线对称轴的肖向射出,反之亦然.如图所示,今有抛物线C,其顶点是坐标原点,对称辅为x轴.开口向右.一光源在点M处,由其发出一条平行于x轴的光线射向抛物线C卜的点P(4.4),经抛物线C反射后,反射光线经过焦点F后射向抛物线C上的点Q,再经抛物线C反射后又沿平行于X轴的方向射出,途中经直线l:2x-4y-17=0上点N反射后又射回点M.
(1)求抛物线C的方程;
(2)求PQ的长度;
(3)判断四边形MPQN是否为平行四边形,若是请给出证明,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,己知矩形ABCD的两个顶点A、D位于x轴上,另两个顶点B、C位于抛物线y=4-x2在x轴上方的曲线上,求这个矩形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点到准线的距离为.过点
作直线交抛物线两点(在第一象限内).
(1)若与焦点重合,且.求直线的方程;
(2)设关于轴的对称点为.直线轴于. 且.求点到直线的距离的取值范围.

查看答案和解析>>

同步练习册答案