£¨2013•·îÏÍÇøһģ£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚÈÎÒâÁ½µãP1£¨x1£¬y1£©ÓëP2£¨x2£¬y2£©µÄ¡°·Ç³£¾àÀ롱¸ø³öÈç϶¨Ò壺Èô|x1-x2|¡Ý|y1-y2|£¬ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|x1-x2|£¬Èô|x1-x2|£¼|y1-y2|£¬ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|y1-y2|£®ÒÑÖªCÊÇÖ±Ïßy=
3
4
x+3ÉϵÄÒ»¸ö¶¯µã£¬µãDµÄ×ø±êÊÇ£¨0£¬1£©£¬ÔòµãCÓëµãDµÄ¡°·Ç³£¾àÀ롱µÄ×îСֵÊÇ
8
7
8
7
£®
·ÖÎö£ºÏÈÉèC£¨x£¬
3
4
x+3£©£¬¸ù¾Ý|x1-x2|¡Ý|y1-y2|£¬ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|x1-x2|¡±Öª£¬C¡¢DÁ½µãµÄ¡°·Ç³£¾àÀ롱µÄ×îСֵΪ-x0=
3
4
x0+2£¬¾Ý´Ë¿ÉÒÔÇó
½â´ð£º½â£ºÈçͼȡµãCÓëµãDµÄ¡°·Ç³£¾àÀ롱µÄ×îСֵʱ£¬ÐèÒª¸ù¾ÝÔËË㶨Òå¡°Èô|x1-x2|¡Ý|y1-y2|£¬
ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|x1-x2|¡±½â´ð£¬´Ëʱ|x1-x2|=|y1-y2|£®
¼´AC=AD£¬
¡ßCÊÇÖ±Ïßy=
3
4
x
+3ÉϵÄÒ»¸ö¶¯µã£¬µãDµÄ×ø±êÊÇ£¨0£¬1£©£¬
¡àÉèµãCµÄ×ø±êΪ£¨x0£¬
3
4
x0+3£©£¬
¡à-x0=
3
4
x0
+2£¬
´Ëʱ£¬x0=-
8
7

¡àµãCÓëµãDµÄ¡°·Ç³£¾àÀ롱µÄ×îСֵΪ£º|x0|=
8
7

¹Ê´ð°¸Îª£º
8
7

µãÆÀ£º±¾ÌâÒÔж¨ÒåΪÔØÌ壬Ö÷Òª¿¼²éÁ˾àÀ빫ʽµÄ¼òµ¥Ó¦Óã¬ÊôÓÚ»ù´¡ÊÔÌâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÒÑÖªx£¾0£¬y£¾0£¬ÇÒ
2
x
+
1
y
=1
£¬Èôx+2y£¾m2+2mºã³ÉÁ¢£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ
-4£¼m£¼2
-4£¼m£¼2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÒÑÖªSnÊǵȲîÊýÁÐ{an}£¨n¡ÊN*£©µÄÇ°nÏîºÍ£¬ÇÒS6£¾S7£¾S5£¬ÓÐÏÂÁÐËĸöÃüÌ⣬¼ÙÃüÌâµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÒÑÖªSnÊǵȲîÊýÁÐ{an}£¨n¡ÊN*£©µÄÇ°nÏîºÍ£¬ÇÒS5£¼S6£¬S6=S7£¾S8£¬ÔòÏÂÁнáÂÛ´íÎóµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©µÈ±ÈÊýÁÐ{cn}Âú×ãcn+1+cn=10•4n-1£¬n¡ÊN*£¬ÊýÁÐ{an}Âú×ãcn=2an
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÊýÁÐ{bn}Âú×ãbn=
1
anan+1
£¬TnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£®Çó
lim
n¡ú¡Þ
Tn
£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸