精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
是实数,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意上为单调递增函数;
(3)若函数为奇函数,且不等式对任意 恒成立,求实数的取值范围。

(1) m="1"
(2)根据函数单调性,结合定义设出变量,结合作差法得到,变形得到证明。
(3)

解析试题分析:解:(1)∵,且
(注:通过求也同样给分)       3分
(2)证明:设,则
==

,所以在R上为增函数。     3分
(3)因为为奇函数且在R上为增函数,

对任意恒成立。
,问题等价于对任意恒成立。
,其对称轴
时,,符合题意     6分
考点:函数的性质的运用
点评:解决的关键是理解奇函数在x=0处函数值为零,同时能结合函数定义来证明函数单调性,确定结论,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分) 已知为实数,
(1)若,求的单调区间;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期.
(2)当时,求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)写出函数的递减区间;
(2)讨论函数的极大值或极小值,如有试写出极值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共10分)
已知函数
(1)解关于的不等式
(2)若函数的图象恒在函数图象的上方(没有公共点),求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分7分)
已知函数
(Ⅰ)当时,求函数的定义域;
(Ⅱ)当函数的定义域为R时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若函数上为增函数,求正实数的取值范围;
(2)当时,求上的最大值和最小值;
(3) 当时,求证:对大于1的任意正整数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数.
(1) 若不等式的解集为,求实数的值;
(2) 在(1)的条件下,使能成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知定义域为的函数是奇函数.
(1)求的值;
(2)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案