精英家教网 > 高中数学 > 题目详情

【题目】某企业生产的一种电器的固定成本(即固定投资)为0.5万元,每生产一台这种电器还需可变成本(即另增加投资)25元,市场对这种电器的年需求量为5百台.已知这种电器的销售收入R与销售量t的关系可用抛物线表示,如图.

(注:销售量的单位:百台,销售收入与纯收益的单位:万元,生产成本=固定成本+可变成本,精确到1台和0.01万元)

1)写出销售收入R与销售量t之间的函数关系式;

2)若销售收入减去生产成本为纯收益,写出纯收益与销售量的函数关系式,并求销售量是多少时,纯收益最大.

【答案】1;(2)售量是475台时,纯收益取得最大值,为10.78万元.

【解析】

1)根据待定系数法,得到R与销售量t的关系式,代入点,得到的值,从而得到答案;(2)设纯收益为万元,则

1)由题图可知

时,,可得

所以.

2)设纯收益为万元,

时,取得最大值

故销售量是台时,纯收益取得最大值,为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设三个数成等差数列,记对应点的曲线是.

(1)求曲线的方程;

(2)已知点,点,点,过点任作直线与曲线相交于两点,设直线的斜率分别为,若,求满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数是(

①球的半径是球面上任意一点与对球心的连线;

②球面上任意两点的连线是球的直径;

③用一个平面截一个球,得到的截面是一个圆;

④用一个平面截一个球,得到的截面是一个圆面;

⑤以半圆的直径所在直线为轴旋转形成的曲面叫做球;

⑥空间中到定点的距离等于定长的所有的点构成的曲面是球面.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地一天从时的温度变化曲线近似满足函数.

(1)求该地区这一段时间内温度的最大温差.

(2)若有一种细菌在之间可以生存,则在这段时间内,该细菌最多能存活多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)求的定义域

(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:x∈R,ax2﹣2ax+1>0,命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则P是q的(  )

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.

(1)求至少有一种新产品研发成功的概率;

(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日本数学家角谷静夫发现的“ 猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以,如果它是奇数我们就把它乘再加上,在这样一个变换下,我们就得到了一个新的自然数。如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的,则输出值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一块长方形区域,在边的中点处有一个可转动的探照灯,其照射角始终为,设,探照灯照射在长方形内部区域的面积为.

1)求关于的函数关系式;

2)当时,求的最大值.

查看答案和解析>>

同步练习册答案