精英家教网 > 高中数学 > 题目详情
1.讨论下列函数在指定点处的导数:
(1)y=$\left\{\begin{array}{l}{{x}^{2}sin\frac{1}{x},x≠0}\\{0,x=0}\end{array}\right.$,x=0;
(2)y=$\left\{\begin{array}{l}{x,x≤1}\\{2-x,x>1}\end{array}\right.$,x=1.

分析 (1)求导y′=$\underset{lim}{x→0}$$\frac{{x}^{2}sin\frac{1}{x}-0}{x-0}$=$\underset{lim}{x→0}$xsin$\frac{1}{x}$=0;
(2)$\underset{lim}{x→{1}^{-}}$$\frac{x-1}{x-1}$=1,$\underset{lim}{x→{1}^{+}}$$\frac{2-x-1}{1-x}$=-1;故不存在导数.

解答 解:(1)由题意得,
y′=$\underset{lim}{x→0}$$\frac{{x}^{2}sin\frac{1}{x}-0}{x-0}$=$\underset{lim}{x→0}$xsin$\frac{1}{x}$=0;
(2)$\underset{lim}{x→{1}^{-}}$$\frac{x-1}{x-1}$=1,
$\underset{lim}{x→{1}^{+}}$$\frac{2-x-1}{1-x}$=-1;
故y=$\left\{\begin{array}{l}{x,x≤1}\\{2-x,x>1}\end{array}\right.$在x=1处没有导数.

点评 本题考查了分段函数的导数的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.某船在海平面A处测得灯塔B在北偏东30°方向,与A相距6.0海里.船由A向正北方向航行8.1海里达到C处,这时灯塔B与船相距4.2海里(精确到0.1海里)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点P在以F1,F2为焦点的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,tan∠PF1F2=$\frac{1}{2}$,则该椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.己知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知△ABC,存在△A1B1C1,满足$\frac{cosA}{sin{A}_{1}}$=$\frac{cosB}{sin{B}_{1}}$=$\frac{cosC}{sin{C}_{1}}$,则称△A1B1C1是△ABC的一个“友好”三角形.
(1)在满足下列条件的三角形中,存在“友好:三角形的是②;(请写出符合要求的条件的序号)
①A=90°,B=60°,C=30°;
②A=75°,B=60°,C=45°;
③A=75°,B=75°,C=30°
(2)若△ABC存在”友好“三角形,且A=70°,则另外两个角的度数分别为65°,45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设F1,F2为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,且|F1F2|=2c,若椭圆上存在点P使得|PF1|•|PF2|=2c2,则椭圆的离心率的最小值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设$\overrightarrow{a}$,$\overrightarrow{b}$分别是不重合的直线l1,l2的方向向量,根据下列条件判断l1,l2的位置关系:
①$\overrightarrow{a}$=(4,6,-2),$\overrightarrow{b}$=(-2,-3,1);
②$\overrightarrow{a}$=(5,0,2),$\overrightarrow{b}$=(0,1,0);
③$\overrightarrow{a}$=(-2,-1,-1),$\overrightarrow{b}$=(4,-2,-8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正三棱柱的底面边长为2$\sqrt{3}$,侧棱长为4,则该正三棱柱的外接球的体积为(  )
A.$\frac{64\sqrt{2}}{3}$πB.32πC.$\frac{64\sqrt{3}}{3}$πD.$\frac{128}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=sinxcosx-1的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案