(本小题满分13分)
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.
(Ⅰ)求证: AE∥平面DCF;
(Ⅱ)若,且二面角A—EF—C的大小为,求的长。
(Ⅰ)证明见解析。
(Ⅱ)
【解析】(Ⅰ)∵ 四边形ABCD是矩形,∴AB∥DC . …… 1分
又∵ BE∥CF , AB∩BE=B,
∴平面ABE∥平面DCF …… 3分
又AE平面ABE,
∴AE∥平面DCF……… 5分
(II)过E作GE⊥CF交CF于G,
由已知 EG∥BC∥AD,且EG=BC=AD,
∴EG=AD=,又EF=2,∴GF=1…6分
∵四边形ABCD是矩形, ∴DC⊥BC .
∵∠BCF=, ∴FC⊥BC,
又平面AC⊥平面BF,平面AC∩平面BF=BC,
∴FC⊥平面AC , ∴FC⊥CD . …………7分
分别以CB、CD、CF为轴建立空间直角坐标系.
∵BE=1,,∴ A(,,0),E(,0,1),F(0,0,2),
∴=(0,- ,1),=(-,0,1). …………8分
设平面AEF的法向量=(x,y,z),
得,∴ =( ,, ). ……10分
又=(0,,0)是平面CEF的一个法向量,
∴ ,即,得=.
∴当的值为时,二面角A—EF—C的大小为 …13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com