精英家教网 > 高中数学 > 题目详情
和F分别为椭圆的中心和左焦点,点P为椭圆上的任意点,则
的最大值是(   )
A. 2B.3C. 6D. 8
C

试题分析:设P(x,y),F(-1,0),所以
,当且仅当x=2时,取得最大值,最大值为6.
点评:本小题关键是把用点P的横坐标x表示出来,然后再根据x的范围,从而转化为函数最值问题来解决.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不过点,求证:直线轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆(),M,N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM,PN的斜率分别为=,则椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程表示的曲线为,给出下列四个命题:
①曲线不可能是圆;  ②若,则曲线为椭圆;③若曲线为双曲线,则;④若曲线表示焦点在x轴上的椭圆,则.
其中正确的命题是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)已知抛物线的顶点是双曲线的中心,而焦点是双曲线的顶点,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的渐近线方程为,则其离心率是为              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是双曲线C:的左焦点,是双曲线的虚轴,的中点,过的直线交双曲线C于,且,则双曲线C离心率是____

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且

(1)求点P的轨迹方程; 
(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.

查看答案和解析>>

同步练习册答案