精英家教网 > 高中数学 > 题目详情
20.已知sinθ<0,tanθ>0.
(1)求θ角的集合;
(2)求$\frac{θ}{2}$终边所在象限;
(3)试判断sin$\frac{θ}{2}$cos$\frac{θ}{2}$tan$\frac{θ}{2}$的符号.

分析 (1)由已知可得θ为第三象限角,即解得θ角的集合.
(2)由(1)可得:$\frac{θ}{2}$∈(kπ+$\frac{π}{2}$,kπ+$\frac{3π}{4}$),k∈Z,分k是偶数,奇数时,讨论即可得解.
(3)利用条件判断角的范围,然后判断sin$\frac{θ}{2}$cos$\frac{θ}{2}$tan$\frac{θ}{2}$的符号.

解答 解:(1)∵sinθ<0,
∴θ为第三、四象限角或在y轴的负半轴上,
∵tanθ>0,
∴θ为第一、三象限角,
∴θ为第三象限角,即θ角的集合为:{θ|2kπ+π,2kπ+$\frac{3π}{2}$,k∈Z}.
(2)由(1)可得:$\frac{θ}{2}$∈(kπ+$\frac{π}{2}$,kπ+$\frac{3π}{4}$),k∈Z,
当k是偶数时,$\frac{θ}{2}$在第二象限,
当 k是奇数时,$\frac{θ}{2}$在第四象限,
(3)∵$\frac{θ}{2}$∈(kπ+$\frac{π}{2}$,kπ+$\frac{3π}{4}$),
∴当k是偶数时,$\frac{θ}{2}$在第二象限,
则tan$\frac{θ}{2}$<0,sin$\frac{θ}{2}$>0,cos$\frac{θ}{2}$<0.可得:sin$\frac{θ}{2}$cos$\frac{θ}{2}$tan$\frac{θ}{2}$>0,
当 k是奇数时,$\frac{θ}{2}$在第四象限,
则tan$\frac{θ}{2}$<0,sin$\frac{θ}{2}$<0,cos$\frac{θ}{2}$>0.可得:sin$\frac{θ}{2}$cos$\frac{θ}{2}$tan$\frac{θ}{2}$>0,
综上,sin$\frac{θ}{2}$cos$\frac{θ}{2}$tan$\frac{θ}{2}$>0.

点评 本题主要考查了三角函数值的符合和象限角的问题.考查了基础知识的灵活运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求f(x)=$\frac{{x}^{2}+a}{\sqrt{{x}^{2}+1}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=1+2sin(x+π)cos(x-\frac{π}{2})$,则f(x)是(  )
A.周期为π的奇函数B.周期为π的偶函数
C.周期为2π的奇函数D.周期为2π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)是一次函数,且一次项系数为正数,若f[f(x)]=4x+8,则f(x)=(  )
A.$2x+\frac{8}{3}$B.-2x-8C.2x-8D.$2x+\frac{8}{3}$或-2x-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$a>b>0,a+b=1,x=-{(\frac{1}{a})^b},y=1o{g_{ab}}(\frac{1}{a}+\frac{1}{b}),z=1o{g_b}\frac{1}{a}$,则(  )
A.x<z<y??B.x<y<z??C.z<y<x??D.x=y<z??

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知tanθ=2,其中$π<θ<\frac{3π}{2}$.
(1)求$\frac{sinθ+2cosθ}{2sinθ+cosθ}$值;             
(2)求$\frac{{cos(θ+4π){{cos}^2}(θ+π){{cos}^2}(θ+\frac{3π}{2})}}{{sin(θ-4π)sin(\frac{π}{2}+θ){{sin}^2}(θ-\frac{π}{2})}}$值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,设直线l:3x-4y+a=0与圆C:x2+y2=4相交于A、B两点,以OA、OB为邻边作平行四边形OAMB,若点M在圆C上,则实数a=±5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xoy中,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,直线l与x轴交于点E,与椭圆C交于A、B两点.当直线l垂直于x轴且点E为椭圆C的右焦点时,弦AB的长为$\frac{{2\sqrt{6}}}{3}$.
(1)求椭圆C的方程;
(2)若点E的坐标为$(\frac{{\sqrt{3}}}{2},0)$,点A在第一象限且横坐标为$\sqrt{3}$,
连结点A与原点O的直线交椭圆C于另一点P,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知t为常数,函数y=|x2-4x+t|在区间[0,3]上的最大值为3,则t=1或3.

查看答案和解析>>

同步练习册答案