精英家教网 > 高中数学 > 题目详情

【题目】受新冠肺炎疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭.高三年级一层楼六个班排队,甲班必须排在前三位,且丙班、丁班必须排在一起,则这六个班排队吃饭的不同安排方案共有(

A.240B.120C.188D.156

【答案】B

【解析】

根据题意,按甲班位置分3 种情况讨论,求出每种情况下的安排方法数目,由加法原理计算即可.

解:根据题意,按甲班位置分3 种情况讨论:

(1)甲班排在第一位,丙班和丁班排在一起的情况有种,将剩余的三个班全排列,安排到剩下的3个位置,有种情况,此时有种安排方案;

2)甲班排在第二位,丙班和丁班在一起的情况有种,将剩下的三个班全排列,安排到剩下的三个位置,有种情况,此时有种安排方案;

3)甲班排在第三位,丙班和丁班排在一起的情况有种,将剩下的三个班全排列,安排到剩下的三个位置,有种情况,此时有种安排方案;

由加法计数原理可知共有种方案,

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中,不正确的是(

A.中,若,则

B.在锐角中,不等式恒成立

C.中,若,则必是等边三角形

D.中,若,则必是等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当函数与函数图象的公切线l经过坐标原点时,求实数a的取值集合;

2)证明:当时,函数有两个零点,且满足

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx22pyp0),F为抛物线C的焦点.以F为圆心,p为半径作圆,与抛物线C在第一象限交点的横坐标为2

1)求抛物线C的方程;

2)直线ykx+1与抛物线C交于AB两点,过AB分别作抛物线C的切线l1l2,设切线l1l2的交点为P,求证:△PAB为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列判断正确的是(

A.函数的最小正周期为,在上单调递增

B.函数的最小正周期为,在上单调递增

C.函数的最小正周期为,在上单调递增

D.函数的最小正周期为,在上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,底面为梯形,.

1平面

2平面

3是棱的中点,棱上存在一点,使.

正确命题的序号为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年女排世界杯(第13届女排世界杯)是由国际排联举办的赛事,比赛于2019年9月14日至9月29日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球_,已知这种球的质量指标ξ(单位:)服从正态分布.比赛赛制采取单循环方式,即每支球队进行11场比赛,最后靠积分选出最后冠军.积分规则如下(比赛采取53胜制):比赛中以取胜的球队积3分,负队积0分;而在比赛中以取胜的球队积2分,负队积1.9轮过后,积分榜上的前2名分别为中国队和美国队,中国队积26分,美国队积22.10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为.

1)如果比赛准备了1000个排球,估计质量指标在内的排球个数(计算结果取整数)

2)第10轮比赛中,记中国队取胜的概率为,求出的最大值点,并以作为p的值,解决下列问题.

i)在第10轮比赛中,中国队所得积分为X,求X的分布列;

ii)已知第10轮美国队积3分,判断中国队能否提前一轮夺得冠军(第10轮过后,无论最后一轮即第11轮结果如何,中国队积分最多)?若能,求出相应的概率;若不能,请说明理由.

参考数据:,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年春节期间全国流行在微信群里发抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:

金额分组

3

9

17

11

8

2

1)求产生的手气红包的金额不小于9元的频率;

2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表)

3)在这50个红包组成的样本中,将频率视为概率.

①若红包金额在区间内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;

②随机抽取手气红包金额在内的两名幸运者,设其手气金额分别为,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PACEAB=CEPAPA⊥平面ABCD.

1)证明:PE⊥平面DBE

2)求二面角BPDE的正弦值的大小.

查看答案和解析>>

同步练习册答案