精英家教网 > 高中数学 > 题目详情

【题目】某中学有教师400人,其中高中教师240人.为了了解该校教师每天课外锻炼时间,现利用分层抽样的方法从该校教师中随机抽取了100名教师进行调查,统计其每天课外锻炼时间(所有教师每天课外锻炼时间均在分钟内),将统计数据按,…,分成6组,制成频率分布直方图如下:

假设每位教师每天课外锻炼时间相互独立,并称每天锻炼时间小于20分钟为缺乏锻炼.

1)试估计本校教师中缺乏锻炼的人数;

2)若从参与调查,且每天课外锻炼时间在内的该校教师中任取2人,求至少有1名初中教师被选中的概率.

【答案】1人.(2

【解析】

1)先求得样本中初中、高中教师缺乏锻炼的频率,由此计算出该校教师中缺乏锻炼的人数.利用列举法,结合古典概型概率计算公式,计算出所求概率.

2)利用列举法,结合古典概型概率计算公式,计算出所求概率.

1)由题意可得样本中初中教师缺乏锻炼的频率为

样本中高中教师缺乏锻炼的频率为

估计该校教师中缺乏锻炼的人数为.

2)由题意可参与调查初中教师每天课外锻炼时间在的人数为,记为

高中教师每天课外锻炼时间在的人数为,记为.

从这5人中选取2人的情况有

,共10种;

其中符合条件的情况有,共7种.

故所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD⊥平面ABCDPAPDEF分别为ADPB的中点.求证:

1EF//平面PCD

2)平面PAB平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司A产品生产的投入成本x(单位:万元)与产品销售收入y(单位:十万元)存在较好的线性关系,下表记录了该公司最近8次该产品的相关数据,且根据这8组数据计算得到y关于x的线性回归方程为

x(万元)

6

7

8

11

12

14

17

21

y(十万元)

1.2

1.5

1.7

2

2.2

2.4

2.6

2.9

1)求的值(结果精确到0.0001),并估计公司A产品投入成本30万元后产品的销售收入(单位:十万元).

2)该公司B产品生产的投入成本u(单位:万元)与产品销售收入v(单位:十万元)也存在较好的线性关系,且v关于u的线性回归方程为

i)估计该公司B产品投入成本30万元后的毛利率(毛利率);

ii)判断该公司AB两个产品都投入成本30万元后,哪个产品的毛利率更大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的归家之一,某市为了制订合理的节水方案,对家庭用水情况进行了抽样调查,获得了某年100个家庭的月均用水量(单位:)的数据,将这些数据按照分成9组,制成了如图所示的频率分布直方图.

1)求图中的值,若该市有30万个家庭,试估计全市月均用水量不低于的家庭数;

2)假设同组中的每个数据都用该组区间的中点值代替,试估计全市家庭月均用水量的平均数;

3)现从月均用水量在的家庭中,先按照分层抽样的方法抽取9个家庭,再从这9家庭中抽取4个家庭,记这4个家庭中月均用水量在中的数量为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的极值点的个数;

2)若3个极值点(其中),证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在20202月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如下频数分布表:

网购消费情况(元)

频数

300

400

180

60

60

1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值;

2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如下列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.

网购不超过4000

网购超过4000

总计

40岁以上

75

100

40岁以下(含40岁)

总计

200

参考公式和数据:.(其中为样本容量)

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x[1e]时,fx)的最小值为_____;设gx)=[fx]2fx+a若函数gx)有6个零点,则实数a的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.

1)求的极坐标方程;

2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的虚轴的一个顶点为,左顶点为,双曲线的左、右焦点分别为,点为线段上的动点,当取得最小值和最大值时,的面积分别为,若,则双曲线的离心率为( ).

A.B.C.D.

查看答案和解析>>

同步练习册答案