精英家教网 > 高中数学 > 题目详情
(2009•淮安模拟)若向圆x2+y2=4所围成的区域内随机地丢一粒豆子,则豆子落在直线x-y+2=0上方的概率是
1
4
-
1
1
4
-
1
分析:根据弓形面积计算公式,算出圆x2+y2=4内位于直线x-y+2=0上方的面积,再利用几何概型计算公式即可算出所求的概率.
解答:解:根据题意,圆x2+y2=4内位于直线x-y+2=0上方的
弓形面积为S'=
1
4
π
×22-
1
2
×2×2
=π-2
∵圆x2+y2=4的面积S=π•22=4π
∴所求的概率为P=
S′
S
=
π-2
=
1
4
-
1

故答案为:
1
4
-
1
点评:本题给出撒豆事件,求豆子落在指定区域的概率.着重考查了圆面积、弓形面积计算公式和几何概型计算公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•淮安模拟)已知函数f(x)=lnx-x+1,x∈(0,+∞).
(1)求f(x)的单调区间和极值;
(2)设a≥1,函数g(x)=x2-3ax+2a2-5,若对于任意x0∈(0,1),总存在x1∈(0,1),使得f(x1)=g(x0)成立,求a的取值范围;
(3)对任意x∈(0,+∞),求证:
1
x+1
<ln
x+1
x
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淮安模拟)若关于x的不等式x2+9+|x2-3x|≥kx在[1,5]上恒成立,则实数k的范围为
(-∞,6]
(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淮安模拟)已知U为实数集,集合M={x|0<x<2},N={x|y=
x-1
}
,则M∩(?UN)=
{x|0<x<1}
{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淮安模拟)某同学在求方程lgx=2-x的近似解(精确到0.1)时,设f(x)=lgx+x-2,发现f(1)<0,f(2)>0,他用“二分法”又取了4个值,通过计算得到方程的近似解为x≈1.8,那么他所取的4个值中的第二个值为
1.75
1.75

查看答案和解析>>

同步练习册答案