精英家教网 > 高中数学 > 题目详情

若x∈[-],求函数y=(1+sinx)(1+cosx)的最大值与最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函f(x)=x3+ax2+bx+5,若x=
23
,y=f(x) 有极值,且曲线y=f(x)在点(1,f(1))处的切线斜率为3.
(1)求函数f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函数y=f(x)-m有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-3x-
3
4
.定义函数f(x)与实数m的一种符号运算为m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函数值f(x)大于0的x的取值范围;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在区间[0,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-3x-
3
4
.定义函数f(x)与实数m的一种符号运算为m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函数值f(x)大于0的x的取值范围;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在区间[0,4]上的最大值与最小值;
(3)是否存在一个数列{an},使得其前n项和Sn=4?f(n)+
7
2
n2
.若存在,求出其通项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值.

查看答案和解析>>

科目:高中数学 来源:2010学年吉林省长春市东北师大附中高考数学五模试卷(文科)(解析版) 题型:解答题

设x1,x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2,求b的最大值.

查看答案和解析>>

同步练习册答案