精英家教网 > 高中数学 > 题目详情
15.如图,PA是圆O的切线,切点为A,过PA的中点M作割线交圆O于点B,C,连接PC交圆于点E,连接PB.
(1)求证:△PMB∽△CMP;
(2)若PM=PE=2,求CE的长.

分析 (1)由PA为圆O的切线,MC为割线,得MA2=MB•MC,由M为PA的中点,得PM2=MB•MC,由此能推导出△PMB~△PMC;
(2)利用PA2=PE•PC,即可求CE的长.

解答 (1)证明:∵PA为圆O的切线,MC为割线,
∴MA2=MB•MC,
又∵M为PA的中点,∴PM2=MB•MC,
∴$\frac{PM}{MC}=\frac{MB}{PM}$,
又∵∠PMB=∠PMC,
∴△PMB~△PMC,
(2)解:∵PA为圆O的切线,PC为割线,
∴PA2=PE•PC,
∵M为PA的中点,PM=PE=2,
∴42=2•(2+CE),
∴CE=6.

点评 本题考查三角形相似的证明,考查切割线定理,考查学生分析解决问题的能力,注意切割线定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x2和函数g(x)=$\frac{1}{2x}$,
(1)求f(1)的值;
(2)求g(1)的值;
(3)求f(1)•g(1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知在△ABC中,tan$\frac{A}{2}$=$\frac{1}{2}$,tan$\frac{B}{2}$=$\frac{1}{3}$,△ABC的形状为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ln(2x),函数g(x)=$\frac{1}{f′(x)}$+af′(x),y=g(x)在x=1处的切线与直线y=-x-5平行.
(1)求a的值.
(2)求直线y=$\frac{3}{4}$x+$\frac{3}{2}$与曲线y=g(x)所围成的图形的面积.
(3)若函数F(x)=f(x)+g(x)+2b在x∈(0,+∞)有且只有两个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tanα=2,则sinαcosα+2sin2α的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)是反比例函数,且f(-4)=3,则f(x)的解析式是f(x)=$-\frac{12}{x}$(x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.y=x${e}^{\frac{1}{{x}^{2}}}$的铅直渐近线是x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c,d≠0,c,d是x2+ax+b=0的解,a,b是x2+cx+d=0的解,求证:(a+b+c+d)2=abcd.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(1+$\sqrt{3}$tanx)•cos2x,
(Ⅰ)当x∈[$\frac{π}{6}$,$\frac{π}{2}$)时,求函数f(x)的取值范围;
(Ⅱ)若在△ABC中,AC=2,BC=2$\sqrt{3}$,f($\frac{A}{2}$)=$\frac{3}{2}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案