精英家教网 > 高中数学 > 题目详情
设Sn是正项数列{an}的前n项和,且an和Sn满足:4Sn=(an+1)2(n=1,2,3,…),则Sn=
 
考点:数列的求和
专题:等差数列与等比数列
分析:由4Sn=(an+1)2,当n=1时,解得a1=1.当n≥2时,an=Sn-Sn-1=(
an
2
+
1
2
)2-(
an-1
2
+
1
2
)2
,可得an-an-1=2.利用等差数列的通项公式即可得出.
解答: 解:由4Sn=(an+1)2,当n=1时,4a1=(a1+1)2,解得a1=1.
当n≥2时,an=Sn-Sn-1=(
an
2
+
1
2
)2-(
an-1
2
+
1
2
)2

∵?n∈N*,an>0.
化为an-an-1=2.
∴an=2n-1.
∴Sn=n2
点评:本题考查了递推式的应用、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对任意非零实数a,b,若a*b的运算原理如程序框图所示,则
1
6
*(cos
3
+tan
4
)等于(  )
A、
1
12
B、
1
8
C、
1
6
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=x2-3×2n-1x+2×4n-1(n∈N*)的图象在x轴上截得的线段长为dn,记数列{dn}的前n项和为Sn,若存在正整数n,使得log2(Sn+1) m-n2≥60成立,则实数m的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:a*b的运算原理如图所示,设f(x)=(0*x)x-(2*x),则f(x)在区间[-2,3]上的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=-x2+x在[2,2+△x](△x>0)上的平均变化率不大于-1,求△x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=2sin(ωx-
π
4
)(ω>0)的图象分别向左、向右各平移
π
4
个单位长度后,所得的两个图象对称轴重合,则ω的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的有
 
(把所有正确的序号都填上).
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②函数y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π;
③命题“函数f(x)在x=x0处有极值,则f′(x)=0”的否命题是真命题;
④函数f(x)=2x-x2的零点有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(x-
π
3
)的图象向左平移
π
6
个单位,再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),则所得函数图象对应的解析式为(  )
A、y=sin(
1
2
x-
π
3
B、y=sin(2x-
π
6
C、y=sin
1
2
x
D、y=sin(
1
2
x-
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程是
x=
2
2
t
y=
2
2
t+4
2
(t是参数),圆C的极坐标方程为ρ=2cos(θ+
π
4
).
(Ⅰ)求圆心C的直角坐标;
(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

同步练习册答案