【题目】国庆70周年庆典磅礴而又欢快的场景,仍历历在目.已知庆典中某省的游行花车需要用到某类花卉,而该类花卉有甲、乙两个品种,花车的设计团队对这两个品种进行了检测.现从两个品种中各抽测了10株的高度,得到如下茎叶图.下列描述正确的是( )
A.甲品种的平均高度大于乙品种的平均高度,且甲品种比乙品种长的整齐
B.甲品种的平均高度大于乙品种的平均高度,但乙品种比甲品种长的整齐
C.乙品种的平均高度大于甲品种的平均高度,且乙品种比甲品种长的整齐
D.乙品种的平均高度大于甲品种的平均高度,但甲品种比乙品种长的整齐
科目:高中数学 来源: 题型:
【题目】三角形面积为S=(a+b+c)r,a,b,c为三角形三边长,r为三角形内切圆半径,利用类比推理,可以得出四面体的体积为 ( )
A. V=abc B. V=Sh
C. V=(ab+bc+ac)·h(h为四面体的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径,设四面体的内切球的球心为O,则球心O到四个面的距离都是r)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,且过点.
求椭圆的标准方程;
设直线l经过点且与椭圆C交于不同的两点M,N试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标坐标系中,过点P(1,0)的直线l的参数方程为(为参数, ),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知顶点在极轴上,开口向右的抛物线C经过极坐标为(2, )的点Q.
(1)求C的极坐标方程;
(2)若l与C交于A、B两点,且|PA|=2|PB|,求tan的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭园C: +=1(a>b>0)的左、右焦点分别为F1,F2.且椭圆C过点(,-),离心率e=;点P在椭圆C 上,延长PF1与椭圆C交于点Q,点R是PF2中点.
(I )求椭圆C的方程;
(II )若O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4一4:坐标系与参数方程]已知直线l过原点且倾斜角为, ,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为psin =4cos.
(I)写出直线l的极坐标方程和曲线C 的直角坐标方程;
(Ⅱ)已知直线l过原点且与直线l相互垂直,若lC=-M,lC=N,其中M,N不与原点重合,求△OMN 面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实常数和,使得函数和对其公共定义域上的任意实数都满足: 和恒成立,则称此直线为和的“隔离直线”,已知函数, ,有下列命题:
①在内单调递增;
②和之间存在“隔离直线”,且的最小值为-4;
③和之间存在“隔离直线”,且的取值范围是;
④和之间存在唯一的“隔离直线”.
其中真命题的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=3,a2,且2an+1=3an﹣an-1.
(1)求证:数列{an+1﹣an}是等比数列,并求数列{an}通项公式;
(2)求数列{nan}的前n项和为Tn,若对任意的正整数n恒成立,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com