精英家教网 > 高中数学 > 题目详情

等式:12+22+32+…+n2,则

[  ]
A.

n为任何自然数时都成立

B.

仅当n=1,2,3时成立

C.

n=4时成立,n=5时不成立

D.

仅当n=4时不成立

答案:B
解析:

先将n=1、2、3、4、5分别代入验证.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知如下等式:12=
1×2×3
6
12+22=
2×3×5
6
12+22+32=
3×4×7
6
,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…由以上等式推测到一个一般的结论:对于n∈N*,12-22+32-42+…+(-1)n+1n2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12
n(2n2+1)
3
时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:
12=1,
12-22=-3,
12-22+32=6,
12-22+33-42=-10,

由以上等式推测到一个一般的结论:对于n∈N*
12-22+33-42+…+(-1))n+1n2=
(-1)n
n(n+1)
2
(-1)n
n(n+1)
2

查看答案和解析>>

同步练习册答案