【题目】如图,过抛物线上的一点作抛物线的切线,分别交x轴于点D交y轴于点B,点Q在抛物线上,点E,F分别在线段AQ,BQ上,且满足,,线段QD与交于点P.
(1)当点P在抛物线C上,且时,求直线的方程;
(2)当时,求的值.
科目:高中数学 来源: 题型:
【题目】某冰糖橙,甜橙的一种,云南著名特产,以味甜皮薄著称。该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5kg),某采购商打算订购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:
等级 | 珍品 | 特级 | 优级 | 一级 |
箱数 | 40 | 30 | 10 | 20 |
(1)若将频率改为概率,从这100箱橙子中有放回地随机抽取4箱,求恰好抽到2箱是一级品的概率:
(2)利用样本估计总体,庄园老板提出两种购销方案供采购商参考:
方案一:不分等级卖出,价格为27元/kg;
方案二:分等级卖出,分等级的橙子价格如下:
等级 | 珍品 | 特级 | 优级 | 一级 |
售价(元/kg) | 36 | 30 | 24 | 18 |
从采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这100箱橙子中抽取10箱,再从抽取的10箱中随机抽取3箱,X表示抽取的是珍品等级,求x的分布列及数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,,,且,.
(1)证明:面;
(2)在上是否存在点,使平面,若存在,请计算的值,若不存在,请说明理由;
(3)若,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是菱形,,且平面,,M,N分别为,的中点.
(1)记平面与底面的交线为l,试判断直线l与平面的位置关系,并证明.
(2)点Q在棱上,若Q到平面的距离为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)求f(x)的单调区间;
(2)若当时,不等式f (x)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于不同的直线与不同的平面,有下列六个命题:
①若则;
②若则;
③若且则;
④若且则;
⑤若且则;
⑥若且则;
其中正确命题的序号是__________;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com