精英家教网 > 高中数学 > 题目详情
已知点A是双曲线的右顶点,过点A且垂直于x轴的直线与双曲线的两条渐近线交于B、C两点,若△BOC为锐角三角形,则离心率的取值范围为________________.
(1,
若△BOC为锐角三角形,只需,即,可求B
,解不等式可得,又因为,故离心率的取值范围(1,)。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(6’+9’)已知双曲线上的任意点。
(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;
(2)设点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若F1、F2分别为双曲线 -=1下、上焦点,O为坐标原点,P在双曲线的下支上,点M在上准线上,且满足:
(1)求此双曲线的离心率;
(2)若此双曲线过N(,2),求此双曲线的方程
(3)若过N(,2)的双曲线的虚轴端点分别B1,B2(B2x轴正半轴上),点A、B在双曲线上,且,求时,直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列曲线的的标准方程:
离心率且椭圆经过;(2)渐近线方程是,经过点

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一条渐近线方程为y=x,且过点(2,4)的双曲线方程为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的左、右两个焦点为, ,动点P满
足|P|+| P |=4.
(I)求动点P的轨迹E的方程;
(1I)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:终段O
上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?作出判断并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M(m,0)到直线AP的距离为1.
(1)若直线AP的斜率为k,且|k|∈[,],求实数m的取值范围;
(2)当m=+1时,△APQ的内心恰好是点M,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1(-4,0)、F2(4,0),曲线上动点P到F1、F2的距离之差为6,则曲线的方程为(    )
A.-="1(x>0)"B.-=1
C.-="1(y>0)"D.-=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以双曲线的顶点为焦点,焦点为顶点的椭圆方程是        .

查看答案和解析>>

同步练习册答案