精英家教网 > 高中数学 > 题目详情
椭圆
x2
16
+
y2
9
=1
的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于A,B两点,若△ABF2的内切圆的面积为π.A,B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为______.
椭圆:
x2
16
+
y2
9
=1
,a=4,b=3,∴c=
7

左、右焦点F1(-
7
,0)、F2
7
,0),
△ABF2的内切圆面积为π,则内切圆的半径为r=1,
而△ABF2的面积=△AF1F2的面积+△BF1F2的面积=
1
2
×|y1|×|F1F2|+
1
2
×|y2|×|F1F2|=
1
2
×(|y1|+|y2|)×|F1F2|=
7
|y2-y1|(A、B在x轴的上下两侧)
又△ABF2的面积═
1
2
×|r(|AB|+|BF2|+|F2A|=
1
2
×(2a+2a)=2a=8.
所以
7
|y2-y1|=8,
|y2-y1|=
8
7
7

故答案为
8
7
7

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,焦点F与双曲线x2-
y2
4
=1
的右顶点重合.
(1)求抛物线的方程;
(2)若直线l经过焦点F,且倾斜角为60°,与抛物线交于A、B两点,求:弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
5
2
3

(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为-
1
2
,求斜率k的值;
②已知点M(-
7
3
,0)
,求证:
MA
MB
为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线x=ky+3与双曲线
x2
9
-
y2
4
=1
只有一个公共点,则k的值有(  )
A.1个B.2个C.3个D.无数多个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A,B分别为椭圆
x2
a2
+
y2
b2
=1(a,b>0)
的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且
PA
=
AB
,则称点P为“λ点”,那么直线l上有______个“λ点”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线x2=2py(p>0)的焦点为F,顶点为O,准线为l,过该抛物线上异于顶点O的任意一点A作AA1⊥l于点A1,以线段AF,AA1为邻边作平行四边形AFCA1,连接直线AC交l于点D,延长AF交抛物线于另一点B.若△AOB的面积为S△AOB,△ABD的面积为S△ABD,则
(S△AOB)2
S△ABD
的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)到F1、F2两点的距离之和为4.
(1)求椭圆C的方程和焦点坐标;
(2)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求弦长|PQ|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为
1
2
.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1x+
3
y+3=0
相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且
MP
MQ
=-2
,求直线l2的方程.

查看答案和解析>>

同步练习册答案