精英家教网 > 高中数学 > 题目详情

【题目】某校有17名学生参加某大学组织的夏令营活动,每人至少参加地学、考古、信息科学三科夏令营活动中的一科,已知其中参加地学夏令营活动的有11人,参加考古夏令营活动的有7人,参加信息科学夏令营活动的有9人,同时参加地学和考古夏令营活动的有4人,同时参加地学和信息科学夏令营活动的有5人,同时参加考古和信息科学夏令营活动的有3人,则三科夏令营活动都参加的人数是_______.

【答案】2

【解析】

设出参加三科竞赛的学生分别组成三个集合ABC,三科夏令营活动都参加的人数为,再根据三个集合两两之间的交集的元素的个数分别是543,列出方程,求解即可.

设参加地学的学生组成集合A,参加考古的组成集合B,参加信息科学的组成集合C
Venn,设三科夏令营活动都参加的人数为.

由题意可列方程,解得.

故答案为:2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图:直线平面直线平行四边形,四棱锥的顶点在平面上, 分别是的中点

(Ⅰ)求证:平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1

(2)若函数f(x)R上单调递增,求实数a的取值范围;

(3)是否存在实数a,使不等式f(x)≥2x3对任意xR恒成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知函数,点分别是的图象与轴、轴的交点,分别是的图象上横坐标为的两点,轴,且三点共线.

1)求函数的解析式;

2)若,求

3)若关于的函数在区间上恰好有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l4x3y100,半径为2的圆Cl相切,圆心Cx轴上且在直线l的右上方.

(1)求圆C的方程;

(2)过点M(10)的直线与圆C交于AB两点(Ax轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数是函数的反函数.

求函数的解析式,并写出定义域

,判断并证明函数在区间上的单调性:

中的函数在区间内的图像是不间断的光滑曲线,求证:函数在区间内必有唯一的零点(假设为),且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足对于任意实数都有,且当时,

1)判断的奇偶性并证明;

2)判断的单调性,并求当时,的最大值及最小值;

3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018安徽江南十校高三3月联考线段为圆 的一条直径,其端点 在抛物线 上,且 两点到抛物线焦点的距离之和为

I)求直径所在的直线方程;

II)过点的直线交抛物线 两点,抛物线 处的切线相交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全国糖酒商品交易会将在四川举办.展馆附近一家川菜特色餐厅为了研究参会人数与本店所需原材料数量的关系,在交易会前查阅了最近5次交易会的参会人数(万人)与餐厅所用原材料数量(袋),得到如下数据:

举办次数

第一次

第二次

第三次

第四次

第五次

参会人数(万人)

11

9

8

10

12

原材料(袋)

28

23

20

25

29

(Ⅰ)请根据所给五组数据,求出关于的线性回归方程

(Ⅱ)若该店现有原材料12袋,据悉本次交易会大约有13万人参加,为了保证原材料能够满足需要,则该店应至少再补充原材料多少袋?

(参考公式:

查看答案和解析>>

同步练习册答案