精英家教网 > 高中数学 > 题目详情
14.“x<0”是“x2+x<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 求出不等式x2+x<0的解集,根据集合的包含关系判断即可.

解答 解:由x2+x<0,解得:-1<x<0,
故x<0”是“x2+x<0”的必要不充分条件,
故选:B.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,正方体ABCD-A1B1C1D1的棱长为a
(1)求证A1C⊥平面BC1D
(2)求四面体A1BDC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和Sn=2n+1-2,数列{bn}满足bn=an•log2an
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设数列{an},{bn}分别为等差数列和等比数列.若a1b1=1,a2b2=1,则a3b3的取值范围是(-∞,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数z满足(1+i)•z=2-i,则复数z的共轭复数$\overline z$=(  )
A.$\frac{1-3i}{2}$B.$\frac{1+3i}{2}$C.$\frac{-1-3i}{2}$D.$\frac{-1+3i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a.设函数F(x)=[f(x)]2-[f(-x)]2,且F(x)不恒等于0,则对于F(x)有如下说法:
①定义域为[-b,b]
②是奇函数   
③最小值为0
④在定义域内单调递增
其中正确说法的序号是①②.(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用定义证明函数f(x)=$\frac{1}{{x}^{2}}$+3在区间(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x∈R,向量$\overrightarrow a=(x,1),\overrightarrow b=(1,-2)$,且$\overrightarrow a⊥\overrightarrow b$,则$|{\overrightarrow a}|$=(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若(1+i)z=2,则|z|是(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

同步练习册答案