精英家教网 > 高中数学 > 题目详情

如图,在长方体AC1中,AB=BC=2,,点E、F分别是面A1C1、面BC1的中心.

(1)求证:BE//平面D1AC;
(2)求证:AF⊥BE;
(3)求异面直线AF与BD所成角的余弦值。

(1)详见解析;(2)详见解析;(3)

解析试题分析:(1)连接交于点,连接,证为平行四边形得//,根据线面平行的判定定理即可证得//平面。(2)用空间向量法证两向量数量积为0。(3)用空间向量法求两向量所成角的余弦值,但应注意两空间向量所成角范围为,异面直线所成角范围为,所以其余弦值应为正数。
试题解析:
(1)(方法一)连接交于点,连接,由长方体知//
所以四边形为平行四边形,所以//,又平面
,故//平面。            (4分)

(方法二)以为坐标原点,所在直线分别为轴建立空间直角坐标系,
,
,.,,,
从而,故故//平面。 (4分)
(2)由(1)的方法二可知
,   (6分)
.    (7分)
所以              (8分)
(3)由(1)、(2)知,,设异面直线AF与BD所成
的角为q,则
故异面直线所成角的余弦值为                 (12分)
考点:1线面平行;2空间向量法在立体几何中的应用。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,设是一个高为的四棱锥,底面是边长为的正方形,顶点在底面上的射影是正方形的中心.是棱的中点.试求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.

求证:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.

求证:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­DCD1.

(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1­EC­D的平面角为?若存在,求出AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥PABCD的底面ABCD为一直角梯形,其中BAADCDADCDAD=2ABPA⊥底面ABCDEPC的中点.
 
(1)求证:BE∥平面PAD
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC­A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1AMCC1的中点.

(1)求证:A1BAM
(2)求二面角B­AM­C的平面角的大小..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥中,底面为菱形,平面分别是的中点.

(1)证明:平面
(2)取,若上的动点,与平面所成最大角的正切值为,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在底面边长为2,高为1的正四梭柱ABCD=A1B1C1D1中,E,F分别为BC,C1D1的中点.

(1)求异面直线A1E,CF所成的角;
(2)求平面A1EF与平面ADD1A1所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案