如图,在长方体AC1中,AB=BC=2,,点E、F分别是面A1C1、面BC1的中心.
(1)求证:BE//平面D1AC;
(2)求证:AF⊥BE;
(3)求异面直线AF与BD所成角的余弦值。
(1)详见解析;(2)详见解析;(3)
解析试题分析:(1)连接和交于点,连接,证为平行四边形得//,根据线面平行的判定定理即可证得//平面。(2)用空间向量法证两向量数量积为0。(3)用空间向量法求两向量所成角的余弦值,但应注意两空间向量所成角范围为,异面直线所成角范围为,所以其余弦值应为正数。
试题解析:
(1)(方法一)连接和交于点,连接,由长方体知//且,
所以四边形为平行四边形,所以//,又平面,平
面,故//平面。 (4分)
(方法二)以为坐标原点,所在直线分别为轴建立空间直角坐标系,
则,
,.,,,
从而,故故//平面。 (4分)
(2)由(1)的方法二可知,
∴, (6分)
∴. (7分)
所以 (8分)
(3)由(1)、(2)知,,设异面直线AF与BD所成
的角为q,则,
故异面直线与所成角的余弦值为 (12分)
考点:1线面平行;2空间向量法在立体几何中的应用。
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.
求证:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.
求证:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1DCD1.
(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1ECD的平面角为?若存在,求出AE的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE∥平面PAD;
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABCA1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A=,M是CC1的中点.
(1)求证:A1B⊥AM;
(2)求二面角BAMC的平面角的大小..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥中,底面为菱形,平面,,分别是的中点.
(1)证明:平面;
(2)取,若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在底面边长为2,高为1的正四梭柱ABCD=A1B1C1D1中,E,F分别为BC,C1D1的中点.
(1)求异面直线A1E,CF所成的角;
(2)求平面A1EF与平面ADD1A1所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com