精英家教网 > 高中数学 > 题目详情
1.如图,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面ABC上的射影恰为BC的中点,且BC=CA=AA1
(Ⅰ)求证:平面ACC1A1⊥平面BCC1B1
(Ⅱ)求证:BC1⊥AB1
(Ⅲ)求二面角B-AB1-C1的余弦值.

分析 (Ⅰ)推导出B1D⊥平面ABC,B1D⊥AC,BC⊥AC,从而AC⊥平面BCC1B1,由此能证明平面ACC1A1⊥平面BCC1B1
(Ⅱ)连结B1C,推导出B1C⊥BC1,AC⊥BC1,从而BC1⊥平面ACB1,由此能证明BC1⊥AB1
(Ⅲ)作BH⊥AB1于H,连结C1H,则∠BHC1是二面角B-AB1-C1的平面角,由此能求出二面角B-AB1-C1的余弦值.

解答 证明:(Ⅰ)∵B1在底面ABC上的射影为D,∴B1D⊥平面ABC,
∵AC?平面ABC,∴B1D⊥AC,
∵∠ACB=90°,∴BC⊥AC,
∵B1D∩BC=D,∴AC⊥平面BCC1B1
∵AC?平面BCC1B1,∴平面ACC1A1⊥平面BCC1B1
(Ⅱ)连结B1C,∵在平行四边形BCC1B1中,BC=CC1,∴平行四边形BCC1B1是菱形,
∴B1C⊥BC1
∵AC⊥平面BCC1B1,BC1?平面BCC1B1
∴AC⊥BC1
∵B1C∩AC=C,∴BC1⊥平面ACB1
∵AB1?平面ACB1,∴BC1⊥AB1
解:(Ⅲ)作BH⊥AB1于H,连结C1H,
∵AB1⊥BC1,BH∩BC1=B,∴AB1⊥平面BHC1
∴∠BHC1是二面角B-AB1-C1的平面角,
设BC=2,则BC1=2$\sqrt{3}$,B1A=2$\sqrt{2}$,BH=$\frac{\sqrt{14}}{2}$,
由Rt△BB1H≌Rt△C1B1H,得${C}_{1}H=BH=\frac{\sqrt{14}}{2}$,
∴cos∠BHC1=$\frac{B{H}^{2}+{C}_{1}{H}^{2}-B{{C}_{1}}^{2}}{2BH•{C}_{1}H}$=$\frac{\frac{7}{2}+\frac{7}{2}-12}{2×\frac{\sqrt{14}}{2}×\frac{\sqrt{14}}{2}}$=-$\frac{5}{7}$.
∴二面角B-AB1-C1的余弦值为-$\frac{5}{7}$.

点评 本题考查面面垂直的证明,考查线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年内蒙古高二理上月考一数学理试卷(解析版) 题型:填空题

抛物线上与焦点的距离等于6的点的坐标是

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(理)试卷(解析版) 题型:填空题

如图,正方体的棱长为1,点,且,有以下四个结论:

;②;③平面;④是异面直线.其中正确命题的序号是_______.(注:把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=4.
(Ⅰ)若点P为AA1的中点,求证:平面B1CP⊥平面B1C1P;
(Ⅱ)在棱AA1上是否存在一点P,使得二面角B1-CP-C1的大小为60°?若存在,求出|AP|的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥D-ABC中,AB=AC=2,∠BAC=90°,DB=DC=$\sqrt{5}$,DA=3,
(1)求证:DA⊥BC
(2)求二面角D-BC-A的余弦值.
(3)棱AC上是否存在点E,使DE与平面BCD所成角的正弦值为$\frac{1}{6}$?若存在,求出$\frac{AE}{AC}$的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD,BC=4,点M为PC中点,点E为BC边上的动点,且$\frac{BE}{EC}=λ$.
(Ⅰ)求证:DM∥平面PAB;  
(Ⅱ)求证:平面ADM⊥平面PBC;
(Ⅲ)是否存在实数λ,使得二面角P-DE-B的余弦值为$\frac{2}{3}$?若存在,试求出实数λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图:网格上的小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面面积中的最大值为(  )
A.16B.8C.2$\sqrt{13}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,图中小方格的长度为1,则该几何体的体积为(  )
A.$\frac{8}{3}$B.4C.2D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC=$\sqrt{2}$.
(1)求证:平面PAD⊥平面PCD;
(2)试在棱PB上确定一点E,使截面AEC把该几何体分成的两部分PDCEA与EACB的体积比为2:1;
(3)在(2)的条件下,求二面角E-AC-P的余弦值.

查看答案和解析>>

同步练习册答案