精英家教网 > 高中数学 > 题目详情
14.设双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一条渐近线的倾斜角为30°,则该双曲线的离心率为$\frac{{2\sqrt{3}}}{3}$.

分析 求出双曲线的渐近线方程,可得a=$\sqrt{3}$,则c=$\sqrt{3+1}$=2,再由离心率公式,即可得到双曲线的离心率.

解答 解:双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的渐近线方程为y=±$\frac{1}{a}$x,
则tan30°=$\frac{1}{a}$即为a=$\sqrt{3}$,则c=$\sqrt{3+1}$=2,
即有e=$\frac{{2\sqrt{3}}}{3}$.
故答案为$\frac{{2\sqrt{3}}}{3}$.

点评 本题考查双曲线的方程和性质,考查离心率的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数f(x)=x2(x≤-1)的反函数是f-1(x)=-$\sqrt{x}$,x≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=ax3+bx2+cx+d与x轴有3个交点(0,0),(x1,0),(x2,0),且f(x)在x=$\frac{3-\sqrt{3}}{3}$,x=$\frac{3+\sqrt{3}}{3}$时取极值,则x1•x2的值为(  )
A.4B.2C.6D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若直线l1:x+ky+1=0(k∈R)与l2:(m+1)x-y+1=0(m∈R)相互平行,则这两直线之间距离的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}是等差数列,其首项为2,且公差为2,若${b_n}={2^{a_n}}$(n∈N*).
(1)求证:数列{bn}是等比数列;
(2)设cn=an+bn,求数列{cn}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直三棱柱ABC-A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.
(1)求证:B1C1∥平面A1DE;
(2)求证:平面A1DE⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.
(Ⅰ)若a=1,解不等式f(x)<6;
(Ⅱ)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.四棱锥P-ABCD中,△PCD为正三角形,底面边长为1的正方形,平面PCD⊥平面ABCD,M为底面内一动点,当$MA=\sqrt{2}PM$时,点M在底面正方形内(包括边界)的轨迹为(  )
A.一个点B.线段C.D.圆弧

查看答案和解析>>

同步练习册答案