精英家教网 > 高中数学 > 题目详情
已知函数y=x-
1
x
的图象为双曲线,在此双曲线的两支上分别取点P、Q,则线段PQ长的最小值为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先找出两条渐近线,一条为x=0,一条为y=x,由此可知此双曲线的对称轴方程,求出此对称轴与双曲线的交点,即可求出最小距离.
解答: 解:函数y=x-
1
x
的导数为y′=1+
1
x2
>1,所以函数的渐近线方程为:x=0与y=x,
两条渐近线的角的平分线与x轴所成的倾斜角为157.5°,
其方程为:y=tan(157.5°)x=(1-
2
)x,
它与函数y=x-
1
x
的交点为:(-
2
2
,-
2
2
+
42
),
2
2
2
2
-
42
),
PQ两点的最短距离为:2
2
2
-2

故答案为:2
2
2
-2
点评:本题考查双曲线的基本性质,利用函数的导数求出函数的斜率范围,推出双曲线的渐近线,求出双曲线的对称轴方程是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直线x-y+4=0上求一点P,使点P到点M(-2,-4),N(4,6)的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:2<x≤3.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-
4
2ax+a
(a>0,a≠1)且f(0)=0.
(Ⅰ)求a的值;
(Ⅱ)若函数g(x)=(2x+1)•f(x)+k有零点,求实数k的取值范围.
(Ⅲ)当x∈(0,1)时,f(x)>m•2x-2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果方程x2-(m+3)x+m+6=0的两个实数根都在(2,4)之间,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别是F1、F2,过点F2的直线交双曲线右支于不同的两点M、N.若△MNF1为正三角形,则该双曲线的离心率为(  )
A、
6
B、
3
C、
2
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,CB是⊙O的直径,AP是⊙O的切线,AP与CB的延长线交于点P,A为切点.若PA=10,PB=5,则AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C1以双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点F为焦点、左准线为准线,P为C1与C2的一个公共点,若直线PF恰好与x轴垂直,则双曲线C2的离心率所在区间为(  )
A、(1,
3
2
)
B、(
3
2
,2)
C、(2,
5
2
)
D、(
5
2
,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(1,1),
b
=(-1,0),则
ta
+
b
(t∈R)模的最小值是
 

查看答案和解析>>

同步练习册答案