精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,侧面底面为正三角形,,点分别为线段的中点,分别为线段上一点,且.

(1)确定点的位置,使得平面

(2)点为线段上一点,且,若平面将四棱锥分成体积相等的两部分,求三棱锥的体积.

【答案】1)详见解析;(2.

【解析】试题分析:(1)运用线面平行的判定定理推证;(2)借助三棱锥的体积公式求解:

试题解析:

解:(1)为线段的靠近的三等分点.

的中点,连接,在线段上取一点,使得,∵,∴

为线段的靠近的三等分点时,即.

,∴平面平面,∵平面,∴平面.

(2)∵三棱锥与四棱锥的高相同,

与四边形的面积相等.

,则,∵

解得.

中点,∵为正三角形,∴,∵平面平面

平面,过,交,则平面

,∴,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:

转速/(转/秒)

16

14

12

8

每小时生产有缺点的零件数/件

11

9

8

5

(1)画出散点图;

(2)如果有线性相关关系,请画出一条直线近似地表示这种线性关系;

(3)在实际生产中,若它们的近似方程为,允许每小时生产的产品中有缺点的零件最多为件,那么机器的运转速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-2aln x+(a-2)x,a∈R.

(1)当a=1时,求函数f(x)的图象在点(1,f(1))处的切线方程.

(2)是否存在实数a,对任意的x1,x2∈(0,+∞)且x1≠x2>a恒成立?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线仅在两个不同的点处的切线都经过点,求证:,或

(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式: 

(1);

(2)已知,则

(3)函数的图象与函数的图象关于y轴对称;

(4)函数的定义域是R,则m的取值范围是;

(5)函数的递增区间为.

正确的______________________.(把你认为正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b与c的夹角;

(2)设O为△ABC的外心,已知AB=3,AC=4,非零实数x,y满足=x+y,且x+2y=1,求cos ∠BAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:

(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?

(2)假设某人的月收入为元, ,记他应纳税为元,求的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与

轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立,求:

(1)打满3局比赛还未停止的概率;

(2)比赛停止时已打局数ξ的分布列与期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C为圆心的圆经过点A(1,0)B(3,4),且圆心在直线x3y150上.设点P在圆C上,求PAB的面积的最大值.

查看答案和解析>>

同步练习册答案