精英家教网 > 高中数学 > 题目详情

已知奇函数f(x)的定义域为R,且对于任意实数x都有f(x+4)=f(x)成立,又f(1)=4,那么f[f( 7)]等于


  1. A.
    5
  2. B.
    4
  3. C.
    0
  4. D.
    -4
C
分析:由f(x+4)=f(x),可得f(7)=f(-1);再利用函数f(x)是实数集R上的奇函数,可得f(-x)=-f(x),f(0)=0,进而可得出答案.
解答:∵对于任意实数x都有f(x+4)=f(x)成立,
∴f(7)=f(3)=f(-1);
又函数f(x)是实数集R上的奇函数,∴f(-1)=-f(1),f(0)=0;
又f(1)=4,∴f(-1)=-4.
∴f(f(7))=f(-4).
而f(-4)=f(0),∴f(f(7))=f(0)=0.
故选C.
点评:充分利用已知条件的周期性、奇偶性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤
12
时,f(x)=x-x2
(1)求证:f(x)是周期函数;
(2)求f(x)在区间[1,2]上的解析式;
(3)求方程f(x)=log10000x的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(-x)的定义域为[-1,0)∪(0,1],其图象是两条直线的一部分(如图所示),则不等式f(x)-f(-x)>-1的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为[-1,1],当x∈[-1,0)时,f(x)=-(
1
2
)
x

(1)求函数f(x)在[0,1]上的值域;
(2)若x∈(0,1],
1
4
f2(x)-
λ
2
f(x)+1的最小值为-2,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x2-2x-3,求f(x)的解析式.
(2)已知奇函数f(x)的定义域为[-3,3],且在区间[-3,0]内递增,求满足f(2m-1)+f(m2-2)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设a>0,f(x)=
ex
a
+
a
ex
是R上的偶函数,求实数a的值;
(2)已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

同步练习册答案