精英家教网 > 高中数学 > 题目详情
已知三棱锥PABC的各顶点均在一个半径为R的球面上,球心OAB上,PO⊥平面ABC,则三棱锥与球的体积之比为________.
依题意,AB=2R,又,∠ACB=90°,因此ACRBCR,三棱锥PABC的体积VPABCPO·SABC×R×R3.
而球的体积VR3,因此VPABCVR3R3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱中,中点,中点.

(1)求三棱柱的体积;
(2)求证:
(3)求证:∥面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿线EF把四边形CDFE折起如图b,使平面CDFE⊥平面ABEF.

(1)求证:AB⊥平面BCE;
(2)求三棱锥C ­ADE体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一个正方体的所有顶点在一个球面上,若球的体积为,则正方体的棱长为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三棱柱ABCA1B1C1,底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球的体积为,则该三棱柱的体积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积.

(1)求V(x)的表达式.
(2)求V(x)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三边长分别为4、5、6的△ABC的外接圆恰好是球O的一个大圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P­ABC的体积为(  )
A.5 B.10
C.20 D.30

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

要做一个圆锥形的漏斗,其母线长为10,要使其体积最大,则高应为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案