精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的个数为( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分条件;
③命题“若m≤ ,则方程mx2+2x+2=0有实数根”的否命题为真命题.
A.0
B.1
C.2
D.3

【答案】B
【解析】解:对于①,“x∈R都有x2≥0”的否定是“x0∈R使得x02<0”,故错;
对于②,当“x≠3”时“|x|=3”成立,故错;
对于③,命题“若m≤ ,则方程mx2+2x+2=0有实数根”的否命题为:“若方程mx2+2x+2=0无实数根”,则“m> “,当m> 时,△=4﹣8m<0,方程mx2+2x+2=0无实数根,故正确,
故选:B
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.

(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)

(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=[x3+3x2+(a+6)x+6﹣a]ex在区间(2,4)上存在极大值点,则实数a的取值范围是(
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在实数集 上的函数,满足条件 是偶函数,且当 时, ,则 的大小关系是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 处有极值 .
(1)求 的值;
(2)判断函数 的单调性并求出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正弦型函数有如下性质:最大值为4,最小值为;相邻两条对称轴间的距离为.

(1)求函数解析式;

(2)当时,求函数的值域;

(3)若方程在区间上有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角所对的边分别为,c.已知

则角的大小________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为 .第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金 (元)的分布列;
(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点 的极坐标为 ,直线 的极坐标方程为 ,且点 在直线 上.
(1)求 的值及直线 的直角坐标方程;
(2)圆 的极坐标方程为 ,试判断直线 与圆 的位置关系.

查看答案和解析>>

同步练习册答案