精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)令,若曲线在点处的切线的纵截距为,求的值;

2)设,若方程在区间内有且只有两个不相等的实数根,求实数的取值范围.

【答案】16;(2

【解析】

1)求得在点处的切线方程,根据切线的截距为列方程,解方程求得的值.

2)将方程转化为,构造函数,利用研究函数内的零点,结合零点存在性定理列不等式组,解不等式组求得的取值范围.

1)由题设知,

,又

∴切点为

则切线方程为

,则

由题设知,

2)∵,∴

则方程

即为

即为

,于是原方程在区间内根的问题,

转化为函数内的零点问题;

,∴当时,

是减函数,

时,是增函数,

若使内有且只有两个不相等的零点,

只需即可,

解得,

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的左顶点为,左焦点为,及点,且成等比数列.

1)求椭圆的方程;

2)斜率不为的动直线过点且与椭圆相交于两点,记,线段上的点满足,试求为坐标原点)面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥中底面为直角梯形,,侧面为正三角形且平面底面分别为的中点.

1)证明:平面

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.

(1)求椭圆的标准方程;

(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆两点(点不同于椭圆的右顶点),证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆节期间,滕州市实验小学举行了一次科普知识竞赛活动,设置了一等奖、二等奖、三等奖、四等奖及纪念奖,获奖人数的分配情况如图所示,各个奖品的单价分别为:一等奖50元、二等奖20元、三等奖10元,四等奖5元,纪念奖2元,则以下说法中不正确的是(

A.获纪念奖的人数最多B.各个奖项中二等奖的总费用最高

C.购买奖品的费用平均数为6.65D.购买奖品的费用中位数为5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点的距离比到直线的距离小,设点的轨迹为曲线.

1)求曲线的方程;

2)过曲线上一点)作两条直线与曲线分别交于不同的两点,若直线的斜率分别为,且.证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,椭圆的上、下顶点分别为,左、右顶点分别为,左、右焦点分别为.原点到直线的距离为.

1)求椭圆的方程;

2是椭圆上异于的任一点,直线,分别交轴于点,若直线与过点的圆相切,切点为,证明:线段的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

()讨论函数的单调性;

()证明: (为自然对数的底)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点分别是椭圆的左、右焦点,为等腰三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过左焦点作直线交椭圆于两点,其中,另一条过的直线交椭圆于两点(不与重合),且点不与点重合. 过轴的垂线分别交直线,.

①求点坐标; ②求证:.

查看答案和解析>>

同步练习册答案