精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数的对称轴方程;

2)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若 分别是三个内角 的对边, ,且,求的值.

【答案】

【解析】试题分析:(1先运用二倍角公式将转化为

的形式后再令,解出x即为的对称轴方程;(2)由三角函数图像平移变换、伸缩变换的方法求出的解析式,再由求出角B后,应用余弦定理即可求出b值.

试题解析:

解:()函数

解得

所以函数fx)的对称轴方程为

)函数fx)的图象各点纵坐标不变,横坐标伸长为原来的2倍,得到函数的图象

再向左平移个单位,得到函数的图象,

所以函数

ABC中, B=0,所以,又

所以,则

由余弦定理可知,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面 分别为 的中点,点在线段上.

(1)求证: 平面

(2)如果三棱锥的体积为,求点到面的距离.

【答案】(1)证明见解析;(2)

【解析】试题分析:

(1)在平行四边形中,得出,进而得到,证得底面,得出,进而证得平面

(2)由到面的距离为,所以 中点,即可求解的值.

试题解析:

证明:(1)在平行四边形中,因为

所以,由 分别为 的中点,得,所以

侧面底面,且 底面

又因为底面,所以

又因为 平面 平面

所以平面

解:(2)到面的距离为1,所以 中点,

型】解答
束】
21

【题目】已知函数

(1)当时,求函数在点处的切线方程;

(2)求函数的极值;

(3)若函数在区间上是增函数,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,点边上,

(1)求的值;

(2)若的面积是,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为的正方体中,的中点,上任意一点,上任意两点,且的长为定值,则下面的四个值中不为定值的是( )

A. 到平面的距离B. 三棱锥的体积

C. 直线与平面所成的角D. 二面角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某气象仪器研究所按以下方案测试一种弹射型气象观测仪器的垂直弹射高度:ABC三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点AB两地相距100米,∠BAC60°,在A地听到弹射声音的时间比在B地晚

秒. A地测得该仪器弹至最高点H时的仰角为30°.

(1)求A、C两地的距离;

(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn,且=9S6=60

(I)求数列{an}的通项公式;

II)若数列{bn}满足bn+1bn=n∈N+)且b1=3,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,底面为长方形,且的中点,作于点.

(1)证明:平面

(2)若三棱锥的体积为,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知函数(其中),其部分图像如图所示.

I)求的解析式;

II)求函数在区间上的最大值及相应的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则

)函数定义域为__________

)函数导函数为__________

)对函数单调研究如下

____

)设函数

函数的最大值为__________

5)函数极值点共__________个,6其中极小值点有__________个.

7)若关于的方程恰有三个不相同的实数解,则的取值范围为__________

查看答案和解析>>

同步练习册答案