【题目】已知函数.
(1)求函数的对称轴方程;
(2)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若, , 分别是△三个内角, , 的对边, , ,且,求的值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面, , , , 分别为, 的中点,点在线段上.
(1)求证: 平面;
(2)如果三棱锥的体积为,求点到面的距离.
【答案】(1)证明见解析;(2).
【解析】试题分析:
(1)在平行四边形中,得出,进而得到,证得底面,得出,进而证得平面.
(2)由到面的距离为,所以面, 为中点,即可求解的值.
试题解析:
证明:(1)在平行四边形中,因为, ,
所以,由, 分别为, 的中点,得,所以.
侧面底面,且, 底面.
又因为底面,所以.
又因为, 平面, 平面,
所以平面.
解:(2)到面的距离为1,所以面, 为中点, .
【题型】解答题
【结束】
21
【题目】已知函数.
(1)当时,求函数在点处的切线方程;
(2)求函数的极值;
(3)若函数在区间上是增函数,试确定的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为的正方体中,为的中点,为上任意一点,,为上任意两点,且的长为定值,则下面的四个值中不为定值的是( )
A. 点到平面的距离B. 三棱锥的体积
C. 直线与平面所成的角D. 二面角的大小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A、B、C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,∠BAC=60°,在A地听到弹射声音的时间比在B地晚
秒. A地测得该仪器弹至最高点H时的仰角为30°.
(1)求A、C两地的距离;
(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn,且=9,S6=60.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn+1﹣bn=(n∈N+)且b1=3,求数列的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,则
()函数定义域为__________.
()函数导函数为__________.
()对函数单调研究如下
____
()设函数则
函数的最大值为__________.
(5)函数极值点共__________个,(6)其中极小值点有__________个.
(7)若关于的方程恰有三个不相同的实数解,则的取值范围为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com