【题目】设椭圆的左、右焦点分别为、,过的直线交椭圆于,两点,若椭圆的离心率为,的周长为16.
(1)求椭圆的方程;
(2)设不经过椭圆的中心而平行于弦的直线交椭圆于点,,设弦,的中点分别为,.证明:,,三点共线.
科目:高中数学 来源: 题型:
【题目】已知为椭圆的左右焦点,点在椭圆上,且.
(1)求椭圆的方程;
(2)过的直线分别交椭圆于和,且,问是否存在常数,使得等差数列?若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.
(1)求证:直线恒过定点;
(2)当直线被圆截得的弦长最短时,求直线的方程;
(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆经过抛物线与坐标轴的三个交点.
(1)求圆的方程;
(2)经过点的直线与圆相交于,两点,若圆在,两点处的切线互相垂直,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,的直角边OA在x轴上,顶点B的坐标为,直线CD交AB于点,交x轴于点.
(1)求直线CD的方程;
(2)动点P在x轴上从点出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.
①点P在运动过程中,是否存在某个位置,使得?若存在,请求出点P的坐标;若不存在,请说明理由;
②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求的值域;
(2)若将函数向右平移个单位得到函数,且为奇函数.
①求的最小值;
②当取最小值时,若与函数在y轴右侧的交点横坐标依次为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记函数的定义域为D. 如果存在实数、使得对任意满
足且的x恒成立,则称为函数.
(1)设函数,试判断是否为函数,并说明理由;
(2)设函数,其中常数,证明: 是函数;
(3)若是定义在上的函数,且函数的图象关于直线(m为常数)对称,试判断是否为周期函数?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com