精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C的极坐标方程为ρ2.

(1)若以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,求曲线C的直角坐标方程;

(2)P(xy)是曲线C上的一个动点,求3x4y的最大值.

【答案】1 2

【解析】试题分析:(1)根据 将曲线C的极坐标方程化为直角坐标方程;(2)根据椭圆参数方程得 ,再根据三角函数有界性得最大值

试题解析:(1)ρ2,得

4ρ2cos2θ+9ρ2sin2θ=36,

∴曲线C的直角坐标方程为=1.

(2)P(3cos θ,2sin θ),则

3x+4y=9cos θ+8sin θsin(θφ).

θ∈R,

∴当sin(θφ)=1时,3x+4y取得最大值,最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位计划建造一间背面靠墙的小屋,其地面面积为12m2,墙面的高度为3m,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为m,房屋背面和地面的费用不计.

1)用含的表达式表示出房屋的总造价;

2)当为多少时,总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= (a∈R),f(x)=ln(x+1)+g(x).

(1)若函数g(x)过点(1,1),求函数f(x)的图象在x=0处的切线方程;

(2)判断函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)当时,判断在定义域上的单调性;

)若上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数满足的虚部为2

1)求复数

2)设在复平面上对应点分别为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调区间;

(2)若函数处取得极值,对任意恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于轴对称,当函数在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

同步练习册答案