精英家教网 > 高中数学 > 题目详情
若变量x,y满足约束条件
3x+2y-6≥0
2x-y+2≥0
1≤x≤2
,则z=2x+y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.
解答: 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,
此时z最大.
y=1
x+y=3
,解得
x=2
y=1
,即C(2,1),
代入目标函数z=2x+y得z=2×2+1=4+1=5.
即目标函数z=2x+y的最大值为5.
故答案为:5.
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点F(2,0),设A,B为双曲线上关于原点对称的两点,以AB为直径的圆过点F,直线AB的斜率为
3
7
7
,则双曲线的离心率为(  )
A、
3
B、
5
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-(a-2)x-alnx.
(1)若函数f(x)在[1,2]上的最小值为1,求实数a的值;
(2)若函数f(x)有两个零点,求满足条件的最小正整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设z=2x+y,其中x,y满足
x+y-1≤0
x-y+1≥0
k≤y≤0
,若z的最大值为6,则k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将正方体(图1)截去两个三棱锥,得到几何体(图2),则该几何体的正视图为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某几何体的三视图,则该几何体的体积为(  )
A、256+128π
B、256+64π
C、64+64π
D、64+32π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B两点分别在两条互相垂直的直线2x-y=0和x+ay=0上,且线段AB的中点为P(0,
10
a
).求AB所在的直线方程,并求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

“a=2”是“直线(a2-a)x+y-1=0和2x+y+1=0互相平行”的(  )
A、充要条件
B、必要不充分条件
C、充分不必要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|-1<x<1},B={x|x≤-1或x≥0},则A∩B=(  )
A、{x|-1<x<1}
B、{x|0<x<1}
C、{x|x≥0}
D、{x|0≤x<1}

查看答案和解析>>

同步练习册答案