精英家教网 > 高中数学 > 题目详情
已知等比数列{an},且a4+a8=
2
0
4-x2
dx,则a6(a2+2a6+a10)的值为(  )
A、π2B、4
C、πD、-9π
考点:定积分,数列的求和
专题:等差数列与等比数列
分析:设等比数列{an}的公比为q,由
2
0
4-x2
dx表示圆的x2+y2=4的面积的
1
4
,可得
2
0
4-x2
dx=π.由于a4+a8=
2
0
4-x2
dx=π=
a6
q2
+a6q2
,可得a6(a2+2a6+a10)=
a
2
6
(
1
q2
+q2)2
2
解答: 解:设等比数列{an}的公比为q,
2
0
4-x2
dx表示圆的x2+y2=4的面积的
1
4
,∴
2
0
4-x2
dx=
1
4
×π×22
=π.
∴a4+a8=
2
0
4-x2
dx=π=
a6
q2
+a6q2

∴a6(a2+2a6+a10)=a6(
a6
q4
+2a6+a6q4)
=
a
2
6
(
1
q2
+q2)2
2
故选:A.
点评:本题考查了定积分的几何意义、等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
10-x-2,x≤0
2ax-1,x>0
(a是常数且a>0).给出下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③函数f(x)在(-∞,0)上的零点是x=lg
1
2

④若f(x)>0在[
1
2
,+∞)上恒成立,则a的取值范围是[1,+∞);
⑤对任意的x1,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(log2x)=
ax+b
x+
2
(a∈R,x>0)
(1)求函数y=f(x)的解析式;
(2)判断并用单调性定义证明函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

一球沿某一斜面自由滚下,测得滚下的垂直距离h(单位:m)与时间t(单位:s)之间的函数关系为h=t2,求t=4s时此球在垂直方向的瞬时速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
频数510151055
赞成人数469634

(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;
(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l的参数方程为
x=1+
t
2
y=
3
2
t
,曲线C的极坐标方程(1+sin2θ)ρ2=2.
(1)写出直线l的普通方程与曲线C直角坐标方程;
(2)设直线l与曲线C相交于两点A、B,若点P为(1,0),求
1
|AP|2
+
1
|BP|2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈R,2x2+(m-1)x+
1
2
≤0”,命题q:“曲线C1
x2
m2
+
y2
2m+8
=1表示焦点在x轴上的椭圆”.若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Mcos(ω+φ)(M>0,ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则g(x)=Msin(ωx+φ)在[a,b]上(  )
A、是增函数
B、是减函数
C、可以取得最小值-M
D、可以取得最大值M

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2ωx-
π
3
)(ω>0)与g(x)=cos(2x+φ)(|φ|<
π
2
)有相同的对称中心.
(1)求f(x)的单调递增区间;
(2)将函数g(x)的图象向右平移
π
6
个单位,再向上平移1个单位,得到函数h(x)的图象,求函数h(x)在[-
π
3
π
3
]上的值域.

查看答案和解析>>

同步练习册答案